{-# OPTIONS -fglasgow-exts #-}
module Properties where
import StackSet hiding (filter)
import qualified StackSet as S (filter)
import Debug.Trace
import Data.Word
import Graphics.X11.Xlib.Types (Rectangle(..),Position,Dimension)
import Data.Ratio
import Data.Maybe
import System.Environment
import Control.Exception (assert)
import qualified Control.Exception as C
import Control.Monad
import Test.QuickCheck hiding (promote)
import System.IO.Unsafe
import System.IO
import System.Random hiding (next)
import Text.Printf
import Data.List (nub,sort,sortBy,group,sort,intersperse,genericLength)
import qualified Data.List as L
import Data.Char (ord)
import Data.Map (keys,elems)
import qualified Data.Map as M
-- ---------------------------------------------------------------------
-- QuickCheck properties for the StackSet
-- Some general hints for creating StackSet properties:
--
-- * ops that mutate the StackSet are usually local
-- * most ops on StackSet should either be trivially reversible, or
-- idempotent, or both.
--
-- The all important Arbitrary instance for StackSet.
--
instance (Integral i, Integral s, Eq a, Arbitrary a, Arbitrary l, Arbitrary sd)
=> Arbitrary (StackSet i l a s sd) where
arbitrary = do
sz <- choose (1,10) -- number of workspaces
n <- choose (0,sz-1) -- pick one to be in focus
sc <- choose (1,sz) -- a number of physical screens
lay <- arbitrary -- pick any layout
sds <- replicateM sc arbitrary
ls <- vector sz -- a vector of sz workspaces
-- pick a random item in each stack to focus
fs <- sequence [ if null s then return Nothing
else liftM Just (choose ((-1),length s-1))
| s <- ls ]
return $ fromList (fromIntegral n, sds,fs,ls,lay)
coarbitrary = error "no coarbitrary for StackSet"
-- | fromList. Build a new StackSet from a list of list of elements,
-- keeping track of the currently focused workspace, and the total
-- number of workspaces. If there are duplicates in the list, the last
-- occurence wins.
--
-- 'o' random workspace
-- 'm' number of physical screens
-- 'fs' random focused window on each workspace
-- 'xs' list of list of windows
--
fromList :: (Integral i, Integral s, Eq a) => (i, [sd], [Maybe Int], [[a]], l) -> StackSet i l a s sd
fromList (_,_,_,[],_) = error "Cannot build a StackSet from an empty list"
fromList (o,m,fs,xs,l) =
let s = view o $
foldr (\(i,ys) s ->
foldr insertUp (view i s) ys)
(new l [0..genericLength xs-1] m) (zip [0..] xs)
in foldr (\f t -> case f of
Nothing -> t
Just i -> foldr (const focusUp) t [0..i] ) s fs
------------------------------------------------------------------------
--
-- Just generate StackSets with Char elements.
--
type T = StackSet (NonNegative Int) Int Char Int Int
-- Useful operation, the non-local workspaces
hidden_spaces x = map workspace (visible x) ++ hidden x
-- Basic data invariants of the StackSet
--
-- With the new zipper-based StackSet, tracking focus is no longer an
-- issue: the data structure enforces focus by construction.
--
-- But we still need to ensure there are no duplicates, and master/and
-- the xinerama mapping aren't checked by the data structure at all.
--
-- * no element should ever appear more than once in a StackSet
-- * the xinerama screen map should be:
-- -- keys should always index valid workspaces
-- -- monotonically ascending in the elements
-- * the current workspace should be a member of the xinerama screens
--
invariant (s :: T) = and
-- no duplicates
[ noDuplicates
-- all this xinerama stuff says we don't have the right structure
-- , validScreens
-- , validWorkspaces
-- , inBounds
]
where
ws = concat [ focus t : up t ++ down t
| w <- workspace (current s) : map workspace (visible s) ++ hidden s
, t <- maybeToList (stack w)] :: [Char]
noDuplicates = nub ws == ws
-- validScreens = monotonic . sort . M. . (W.current s : W.visible : W$ s
-- validWorkspaces = and [ w `elem` allworkspaces | w <- (M.keys . screens) s ]
-- where allworkspaces = map tag $ current s : prev s ++ next s
-- inBounds = and [ w >=0 && w < size s | (w,sc) <- M.assocs (screens s) ]
monotonic [] = True
monotonic (x:[]) = True
monotonic (x:y:zs) | x == y-1 = monotonic (y:zs)
| otherwise = False
prop_invariant = invariant
-- and check other ops preserve invariants
prop_empty_I (n :: Positive Int) l = forAll (choose (1,fromIntegral n)) $ \m ->
forAll (vector m) $ \ms ->
invariant $ new l [0..fromIntegral n-1] ms
prop_view_I (n :: NonNegative Int) (x :: T) =
n `tagMember` x ==> invariant $ view (fromIntegral n) x
prop_greedyView_I (n :: NonNegative Int) (x :: T) =
n `tagMember` x ==> invariant $ view (fromIntegral n) x
prop_focusUp_I (n :: NonNegative Int) (x :: T) =
invariant $ foldr (const focusUp) x [1..n]
prop_focusMaster_I (n :: NonNegative Int) (x :: T) =
invariant $ foldr (const focusMaster) x [1..n]
prop_focusDown_I (n :: NonNegative Int) (x :: T) =
invariant $ foldr (const focusDown) x [1..n]
prop_focus_I (n :: NonNegative Int) (x :: T) =
case peek x of
Nothing -> True
Just _ -> let w = focus . fromJust . stack . workspace . current $ foldr (const focusUp) x [1..n]
in invariant $ focusWindow w x
prop_insertUp_I n (x :: T) = invariant $ insertUp n x
prop_delete_I (x :: T) = invariant $
case peek x of
Nothing -> x
Just i -> delete i x
prop_swap_master_I (x :: T) = invariant $ swapMaster x
prop_swap_left_I (n :: NonNegative Int) (x :: T) =
invariant $ foldr (const swapUp ) x [1..n]
prop_swap_right_I (n :: NonNegative Int) (x :: T) =
invariant $ foldr (const swapDown) x [1..n]
prop_shift_I (n :: NonNegative Int) (x :: T) =
n `tagMember` x ==> invariant $ shift (fromIntegral n) x
prop_shift_win_I (n :: NonNegative Int) (w :: Char) (x :: T) =
n `tagMember` x && w `member` x ==> invariant $ shiftWin (fromIntegral n) w x
-- ---------------------------------------------------------------------
-- 'new'
-- empty StackSets have no windows in them
prop_empty (EmptyStackSet x) =
all (== Nothing) [ stack w | w <- workspace (current x)
: map workspace (visible x) ++ hidden x ]
-- empty StackSets always have focus on first workspace
prop_empty_current (NonEmptyNubList ns) (NonEmptyNubList sds) l =
-- TODO, this is ugly
length sds <= length ns ==>
tag (workspace $ current x) == head ns
where x = new l ns sds :: T
-- no windows will be a member of an empty workspace
prop_member_empty i (EmptyStackSet x)
= member i x == False
-- ---------------------------------------------------------------------
-- viewing workspaces
-- view sets the current workspace to 'n'
prop_view_current (x :: T) (n :: NonNegative Int) = i `tagMember` x ==>
tag (workspace $ current (view i x)) == i
where
i = fromIntegral n
-- view *only* sets the current workspace, and touches Xinerama.
-- no workspace contents will be changed.
prop_view_local (x :: T) (n :: NonNegative Int) = i `tagMember` x ==>
workspaces x == workspaces (view i x)
where
workspaces a = sortBy (\s t -> tag s `compare` tag t) $
workspace (current a)
: map workspace (visible a) ++ hidden a
i = fromIntegral n
-- view should result in a visible xinerama screen
-- prop_view_xinerama (x :: T) (n :: NonNegative Int) = i `tagMember` x ==>
-- M.member i (screens (view i x))
-- where
-- i = fromIntegral n
-- view is idempotent
prop_view_idem (x :: T) (i :: NonNegative Int) = i `tagMember` x ==> view i (view i x) == (view i x)
-- view is reversible, though shuffles the order of hidden/visible
prop_view_reversible (i :: NonNegative Int) (x :: T) =
i `tagMember` x ==> normal (view n (view i x)) == normal x
where n = tag (workspace $ current x)
-- ---------------------------------------------------------------------
-- greedyViewing workspaces
-- greedyView sets the current workspace to 'n'
prop_greedyView_current (x :: T) (n :: NonNegative Int) = i `tagMember` x ==>
tag (workspace $ current (greedyView i x)) == i
where
i = fromIntegral n
-- greedyView *only* sets the current workspace, and touches Xinerama.
-- no workspace contents will be changed.
prop_greedyView_local (x :: T) (n :: NonNegative Int) = i `tagMember` x ==>
workspaces x == workspaces (greedyView i x)
where
workspaces a = sortBy (\s t -> tag s `compare` tag t) $
workspace (current a)
: map workspace (visible a) ++ hidden a
i = fromIntegral n
-- greedyView is idempotent
prop_greedyView_idem (x :: T) (i :: NonNegative Int) = i `tagMember` x ==> greedyView i (greedyView i x) == (greedyView i x)
-- greedyView is reversible, though shuffles the order of hidden/visible
prop_greedyView_reversible (i :: NonNegative Int) (x :: T) =
i `tagMember` x ==> normal (greedyView n (greedyView i x)) == normal x
where n = tag (workspace $ current x)
-- normalise workspace list
normal s = s { hidden = sortBy g (hidden s), visible = sortBy f (visible s) }
where
f = \a b -> tag (workspace a) `compare` tag (workspace b)
g = \a b -> tag a `compare` tag b
-- ---------------------------------------------------------------------
-- Xinerama
-- every screen should yield a valid workspace
-- prop_lookupWorkspace (n :: NonNegative Int) (x :: T) =
-- s < M.size (screens x) ==>
-- fromJust (lookupWorkspace s x) `elem` (map tag $ current x : prev x ++ next x)
-- where
-- s = fromIntegral n
-- ---------------------------------------------------------------------
-- peek/index
-- peek either yields nothing on the Empty workspace, or Just a valid window
prop_member_peek (x :: T) =
case peek x of
Nothing -> True {- then we don't know anything -}
Just i -> member i x
-- ---------------------------------------------------------------------
-- index
-- the list returned by index should be the same length as the actual
-- windows kept in the zipper
prop_index_length (x :: T) =
case stack . workspace . current $ x of
Nothing -> length (index x) == 0
Just it -> length (index x) == length (focus it : up it ++ down it)
-- ---------------------------------------------------------------------
-- rotating focus
--
-- master/focus
--
-- The tiling order, and master window, of a stack is unaffected by focus changes.
--
prop_focus_left_master (n :: NonNegative Int) (x::T) =
index (foldr (const focusUp) x [1..n]) == index x
prop_focus_right_master (n :: NonNegative Int) (x::T) =
index (foldr (const focusDown) x [1..n]) == index x
prop_focus_master_master (n :: NonNegative Int) (x::T) =
index (foldr (const focusMaster) x [1..n]) == index x
prop_focusWindow_master (n :: NonNegative Int) (x :: T) =
case peek x of
Nothing -> True
Just _ -> let s = index x
i = fromIntegral n `mod` length s
in index (focusWindow (s !! i) x) == index x
-- shifting focus is trivially reversible
prop_focus_left (x :: T) = (focusUp (focusDown x)) == x
prop_focus_right (x :: T) = (focusDown (focusUp x)) == x
-- focus master is idempotent
prop_focusMaster_idem (x :: T) = focusMaster x == focusMaster (focusMaster x)
-- focusWindow actually leaves the window focused...
prop_focusWindow_works (n :: NonNegative Int) (x :: T) =
case peek x of
Nothing -> True
Just _ -> let s = index x
i = fromIntegral n `mod` length s
in (focus . fromJust . stack . workspace . current) (focusWindow (s !! i) x) == (s !! i)
-- rotation through the height of a stack gets us back to the start
prop_focus_all_l (x :: T) = (foldr (const focusUp) x [1..n]) == x
where n = length (index x)
prop_focus_all_r (x :: T) = (foldr (const focusDown) x [1..n]) == x
where n = length (index x)
-- prop_rotate_all (x :: T) = f (f x) == f x
-- f x' = foldr (\_ y -> rotate GT y) x' [1..n]
-- focus is local to the current workspace
prop_focus_down_local (x :: T) = hidden_spaces (focusDown x) == hidden_spaces x
prop_focus_up_local (x :: T) = hidden_spaces (focusUp x) == hidden_spaces x
prop_focus_master_local (x :: T) = hidden_spaces (focusMaster x) == hidden_spaces x
prop_focusWindow_local (n :: NonNegative Int) (x::T ) =
case peek x of
Nothing -> True
Just _ -> let s = index x
i = fromIntegral n `mod` length s
in hidden_spaces (focusWindow (s !! i) x) == hidden_spaces x
-- ---------------------------------------------------------------------
-- member/findTag
--
-- For all windows in the stackSet, findTag should identify the
-- correct workspace
--
prop_findIndex (x :: T) =
and [ tag w == fromJust (findTag i x)
| w <- workspace (current x) : map workspace (visible x) ++ hidden x
, t <- maybeToList (stack w)
, i <- focus t : up t ++ down t
]
prop_allWindowsMember w (x :: T) = (w `elem` allWindows x) ==> member w x
-- ---------------------------------------------------------------------
-- 'insert'
-- inserting a item into an empty stackset means that item is now a member
prop_insert_empty i (EmptyStackSet x)= member i (insertUp i x)
-- insert should be idempotent
prop_insert_idem i (x :: T) = insertUp i x == insertUp i (insertUp i x)
-- insert when an item is a member should leave the stackset unchanged
prop_insert_duplicate i (x :: T) = member i x ==> insertUp i x == x
-- push shouldn't change anything but the current workspace
prop_insert_local (x :: T) i = not (member i x) ==> hidden_spaces x == hidden_spaces (insertUp i x)
-- Inserting a (unique) list of items into an empty stackset should
-- result in the last inserted element having focus.
prop_insert_peek (EmptyStackSet x) (NonEmptyNubList is) =
peek (foldr insertUp x is) == Just (head is)
-- insert >> delete is the identity, when i `notElem` .
-- Except for the 'master', which is reset on insert and delete.
--
prop_insert_delete n x = not (member n x) ==> delete n (insertUp n y) == (y :: T)
where
y = swapMaster x -- sets the master window to the current focus.
-- otherwise, we don't have a rule for where master goes.
-- inserting n elements increases current stack size by n
prop_size_insert is (EmptyStackSet x) =
size (foldr insertUp x ws ) == (length ws)
where
ws = nub is
size = length . index
-- ---------------------------------------------------------------------
-- 'delete'
-- deleting the current item removes it.
prop_delete x =
case peek x of
Nothing -> True
Just i -> not (member i (delete i x))
where _ = x :: T
-- delete is reversible with 'insert'.
-- It is the identiy, except for the 'master', which is reset on insert and delete.
--
prop_delete_insert (x :: T) =
case peek x of
Nothing -> True
Just n -> insertUp n (delete n y) == y
where
y = swapMaster x
-- delete should be local
prop_delete_local (x :: T) =
case peek x of
Nothing -> True
Just i -> hidden_spaces x == hidden_spaces (delete i x)
-- delete should not affect focus unless the focused element is what is being deleted
prop_delete_focus n (x :: T) = member n x && Just n /= peek x ==> peek (delete n x) == peek x
-- focus movement in the presence of delete:
-- when the last window in the stack set is focused, focus moves `up'.
-- usual case is that it moves 'down'.
prop_delete_focus_end (x :: T) =
length (index x) > 1
==>
peek (delete n y) == peek (focusUp y)
where
n = last (index x)
y = focusWindow n x -- focus last window in stack
-- focus movement in the presence of delete:
-- when not in the last item in the stack, focus moves down
prop_delete_focus_not_end (x :: T) =
length (index x) > 1 &&
n /= last (index x)
==>
peek (delete n x) == peek (focusDown x)
where
Just n = peek x
-- ---------------------------------------------------------------------
-- filter
-- preserve order
prop_filter_order (x :: T) =
case stack $ workspace $ current x of
Nothing -> True
Just s@(Stack i _ _) -> integrate' (S.filter (/= i) s) == filter (/= i) (integrate' (Just s))
-- ---------------------------------------------------------------------
-- swapUp, swapDown, swapMaster: reordiring windows
-- swap is trivially reversible
prop_swap_left (x :: T) = (swapUp (swapDown x)) == x
prop_swap_right (x :: T) = (swapDown (swapUp x)) == x
-- TODO swap is reversible
-- swap is reversible, but involves moving focus back the window with
-- master on it. easy to do with a mouse...
{-
prop_promote_reversible x b = (not . null . fromMaybe [] . flip index x . current $ x) ==>
(raiseFocus y . promote . raiseFocus z . promote) x == x
where _ = x :: T
dir = if b then LT else GT
(Just y) = peek x
(Just (z:_)) = flip index x . current $ x
-}
-- swap doesn't change focus
prop_swap_master_focus (x :: T) = peek x == (peek $ swapMaster x)
-- = case peek x of
-- Nothing -> True
-- Just f -> focus (stack (workspace $ current (swap x))) == f
prop_swap_left_focus (x :: T) = peek x == (peek $ swapUp x)
prop_swap_right_focus (x :: T) = peek x == (peek $ swapDown x)
-- swap is local
prop_swap_master_local (x :: T) = hidden_spaces x == hidden_spaces (swapMaster x)
prop_swap_left_local (x :: T) = hidden_spaces x == hidden_spaces (swapUp x)
prop_swap_right_local (x :: T) = hidden_spaces x == hidden_spaces (swapDown x)
-- rotation through the height of a stack gets us back to the start
prop_swap_all_l (x :: T) = (foldr (const swapUp) x [1..n]) == x
where n = length (index x)
prop_swap_all_r (x :: T) = (foldr (const swapDown) x [1..n]) == x
where n = length (index x)
prop_swap_master_idempotent (x :: T) = swapMaster (swapMaster x) == swapMaster x
-- ---------------------------------------------------------------------
-- shift
-- shift is fully reversible on current window, when focus and master
-- are the same. otherwise, master may move.
prop_shift_reversible i (x :: T) =
i `tagMember` x ==> case peek y of
Nothing -> True
Just _ -> normal ((view n . shift n . view i . shift i) y) == normal y
where
y = swapMaster x
n = tag (workspace $ current y)
-- ---------------------------------------------------------------------
-- shiftWin
-- shiftWin on current window is the same as shift
prop_shift_win_focus i (x :: T) =
i `tagMember` x ==> case peek x of
Nothing -> True
Just w -> shiftWin i w x == shift i x
-- shiftWin on a non-existant window is identity
prop_shift_win_indentity i w (x :: T) =
i `tagMember` x && not (w `member` x) ==> shiftWin i w x == x
-- shiftWin leaves the current screen as it is, if neither i is the tag
-- of the current workspace nor w on the current workspace
prop_shift_win_fix_current i w (x :: T) =
i `tagMember` x && w `member` x && i /= n && findTag w x /= Just n
==> (current $ x) == (current $ shiftWin i w x)
where
n = tag (workspace $ current x)
------------------------------------------------------------------------
-- properties for the floating layer:
prop_float_reversible n (x :: T) =
n `member` x ==> sink n (float n geom x) == x
where
geom = RationalRect 100 100 100 100
-- check rectanges were set
{-
prop_float_sets_geometry n (x :: T) =
n `member` x ==> let y = float n geom x in M.lookup y (floating x) == Just geom
where
geom = RationalRect 100 100 100 100
-}
------------------------------------------------------------------------
prop_screens (x :: T) = n `elem` screens x
where
n = current x
prop_differentiate xs =
if null xs then differentiate xs == Nothing
else (differentiate xs) == Just (Stack (head xs) [] (tail xs))
where _ = xs :: [Int]
-- looking up the tag of the current workspace should always produce a tag.
prop_lookup_current (x :: T) = lookupWorkspace scr x == Just tg
where
(Screen (Workspace tg _ _) scr _) = current x
-- looking at a visible tag
prop_lookup_visible (x :: T) =
visible x /= [] ==>
fromJust (lookupWorkspace scr x) `elem` tags
where
tags = [ tag (workspace y) | y <- visible x ]
scr = last [ screen y | y <- visible x ]
-- ---------------------------------------------------------------------
-- testing for failure
-- and help out hpc
prop_abort x = unsafePerformIO $ C.catch (abort "fail")
(\e -> return $ show e == "xmonad: StackSet: fail" )
where
_ = x :: Int
-- new should fail with an abort
prop_new_abort x = unsafePerformIO $ C.catch f
(\e -> return $ show e == "xmonad: StackSet: non-positive argument to StackSet.new" )
where
f = new undefined{-layout-} [] [] `seq` return False
_ = x :: Int
-- prop_view_should_fail = view {- with some bogus data -}
-- screens makes sense
prop_screens_works (x :: T) = screens x == current x : visible x
------------------------------------------------------------------------
-- renaming tags
-- | Rename a given tag if present in the StackSet.
-- 408 renameTag :: Eq i => i -> i -> StackSet i l a s sd -> StackSet i l a s sd
prop_rename1 (x::T) o n = o `tagMember` x && not (n `tagMember` x) ==>
let y = renameTag o n x
in n `tagMember` y
prop_ensure (x :: T) l xs = let y = ensureTags l xs x
in and [ n `tagMember` y | n <- xs ]
prop_mapWorkspaceId (x::T) = x == mapWorkspace id x
prop_mapWorkspaceInverse (x::T) = x == mapWorkspace predTag (mapWorkspace succTag x)
where predTag w = w { tag = pred $ tag w }
succTag w = w { tag = succ $ tag w }
prop_mapLayoutId (x::T) = x == mapLayout id x
prop_mapLayoutInverse (x::T) = x == mapLayout pred (mapLayout succ x)
------------------------------------------------------------------------
-- some properties for layouts:
-- 1 window should always be tiled fullscreen
{-
prop_tile_fullscreen rect = tile pct rect 1 1 == [rect]
-- multiple windows
prop_tile_non_overlap rect windows nmaster = noOverlaps (tile pct rect nmaster windows)
where _ = rect :: Rectangle
pct = 3 % 100
noOverlaps [] = True
noOverlaps [_] = True
noOverlaps xs = and [ verts a `notOverlap` verts b
| a <- xs
, b <- filter (a /=) xs
]
where
verts (Rectangle a b w h) = (a,b,a + fromIntegral w - 1, b + fromIntegral h - 1)
notOverlap (left1,bottom1,right1,top1)
(left2,bottom2,right2,top2)
= (top1 < bottom2 || top2 < bottom1)
|| (right1 < left2 || right2 < left1)
-}
------------------------------------------------------------------------
main :: IO ()
main = do
args <- getArgs
let n = if null args then 100 else read (head args)
(results, passed) <- liftM unzip $ mapM (\(s,a) -> printf "%-25s: " s >> a n) tests
printf "Passed %d tests!\n" (sum passed)
when (not . and $ results) $ fail "Not all tests passed!"
where
tests =
[("StackSet invariants" , mytest prop_invariant)
,("empty: invariant" , mytest prop_empty_I)
,("empty is empty" , mytest prop_empty)
,("empty / current" , mytest prop_empty_current)
,("empty / member" , mytest prop_member_empty)
,("view : invariant" , mytest prop_view_I)
,("view sets current" , mytest prop_view_current)
,("view idempotent" , mytest prop_view_idem)
,("view reversible" , mytest prop_view_reversible)
-- ,("view / xinerama" , mytest prop_view_xinerama)
,("view is local" , mytest prop_view_local)
,("greedyView : invariant" , mytest prop_greedyView_I)
,("greedyView sets current" , mytest prop_greedyView_current)
,("greedyView idempotent" , mytest prop_greedyView_idem)
,("greedyView reversible" , mytest prop_greedyView_reversible)
,("greedyView is local" , mytest prop_greedyView_local)
--
-- ,("valid workspace xinerama", mytest prop_lookupWorkspace)
,("peek/member " , mytest prop_member_peek)
,("index/length" , mytest prop_index_length)
,("focus left : invariant", mytest prop_focusUp_I)
,("focus master : invariant", mytest prop_focusMaster_I)
,("focus right: invariant", mytest prop_focusDown_I)
,("focusWindow: invariant", mytest prop_focus_I)
,("focus left/master" , mytest prop_focus_left_master)
,("focus right/master" , mytest prop_focus_right_master)
,("focus master/master" , mytest prop_focus_master_master)
,("focusWindow master" , mytest prop_focusWindow_master)
,("focus left/right" , mytest prop_focus_left)
,("focus right/left" , mytest prop_focus_right)
,("focus all left " , mytest prop_focus_all_l)
,("focus all right " , mytest prop_focus_all_r)
,("focus down is local" , mytest prop_focus_down_local)
,("focus up is local" , mytest prop_focus_up_local)
,("focus master is local" , mytest prop_focus_master_local)
,("focus master idemp" , mytest prop_focusMaster_idem)
,("focusWindow is local", mytest prop_focusWindow_local)
,("focusWindow works" , mytest prop_focusWindow_works)
,("findTag" , mytest prop_findIndex)
,("allWindows/member" , mytest prop_allWindowsMember)
,("insert: invariant" , mytest prop_insertUp_I)
,("insert/new" , mytest prop_insert_empty)
,("insert is idempotent", mytest prop_insert_idem)
,("insert is reversible", mytest prop_insert_delete)
,("insert is local" , mytest prop_insert_local)
,("insert duplicates" , mytest prop_insert_duplicate)
,("insert/peek " , mytest prop_insert_peek)
,("insert/size" , mytest prop_size_insert)
,("delete: invariant" , mytest prop_delete_I)
,("delete/empty" , mytest prop_empty)
,("delete/member" , mytest prop_delete)
,("delete is reversible", mytest prop_delete_insert)
,("delete is local" , mytest prop_delete_local)
,("delete/focus" , mytest prop_delete_focus)
,("delete last/focus up", mytest prop_delete_focus_end)
,("delete ~last/focus down", mytest prop_delete_focus_not_end)
,("filter preserves order", mytest prop_filter_order)
,("swapMaster: invariant", mytest prop_swap_master_I)
,("swapUp: invariant" , mytest prop_swap_left_I)
,("swapDown: invariant", mytest prop_swap_right_I)
,("swapMaster id on focus", mytest prop_swap_master_focus)
,("swapUp id on focus", mytest prop_swap_left_focus)
,("swapDown id on focus", mytest prop_swap_right_focus)
,("swapMaster is idempotent", mytest prop_swap_master_idempotent)
,("swap all left " , mytest prop_swap_all_l)
,("swap all right " , mytest prop_swap_all_r)
,("swapMaster is local" , mytest prop_swap_master_local)
,("swapUp is local" , mytest prop_swap_left_local)
,("swapDown is local" , mytest prop_swap_right_local)
,("shift: invariant" , mytest prop_shift_I)
,("shift is reversible" , mytest prop_shift_reversible)
,("shiftWin: invariant" , mytest prop_shift_win_I)
,("shiftWin is shift on focus" , mytest prop_shift_win_focus)
,("shiftWin fix current" , mytest prop_shift_win_fix_current)
,("floating is reversible" , mytest prop_float_reversible)
,("screens includes current", mytest prop_screens)
,("differentiate works", mytest prop_differentiate)
,("lookupTagOnScreen", mytest prop_lookup_current)
,("lookupTagOnVisbleScreen", mytest prop_lookup_visible)
,("screens works", mytest prop_screens_works)
,("renaming works", mytest prop_rename1)
,("ensure works", mytest prop_ensure)
,("mapWorkspace id", mytest prop_mapWorkspaceId)
,("mapWorkspace inverse", mytest prop_mapWorkspaceInverse)
,("mapLayout id", mytest prop_mapLayoutId)
,("mapLayout inverse", mytest prop_mapLayoutInverse)
-- testing for failure:
,("abort fails", mytest prop_abort)
,("new fails with abort", mytest prop_new_abort)
,("shiftWin identity", mytest prop_shift_win_indentity)
-- renaming
{-
,("tile 1 window fullsize", mytest prop_tile_fullscreen)
,("tiles never overlap", mytest prop_tile_non_overlap)
-}
]
------------------------------------------------------------------------
--
-- QC driver
--
debug = False
mytest :: Testable a => a -> Int -> IO (Bool, Int)
mytest a n = mycheck defaultConfig
{ configMaxTest=n
, configEvery = \n args -> let s = show n in s ++ [ '\b' | _ <- s ] } a
-- , configEvery= \n args -> if debug then show n ++ ":\n" ++ unlines args else [] } a
mycheck :: Testable a => Config -> a -> IO (Bool, Int)
mycheck config a = do
rnd <- newStdGen
mytests config (evaluate a) rnd 0 0 []
mytests :: Config -> Gen Result -> StdGen -> Int -> Int -> [[String]] -> IO (Bool, Int)
mytests config gen rnd0 ntest nfail stamps
| ntest == configMaxTest config = done "OK," ntest stamps >> return (True, ntest)
| nfail == configMaxFail config = done "Arguments exhausted after" ntest stamps >> return (True, ntest)
| otherwise =
do putStr (configEvery config ntest (arguments result)) >> hFlush stdout
case ok result of
Nothing ->
mytests config gen rnd1 ntest (nfail+1) stamps
Just True ->
mytests config gen rnd1 (ntest+1) nfail (stamp result:stamps)
Just False ->
putStr ( "Falsifiable after "
++ show ntest
++ " tests:\n"
++ unlines (arguments result)
) >> hFlush stdout >> return (False, ntest)
where
result = generate (configSize config ntest) rnd2 gen
(rnd1,rnd2) = split rnd0
done :: String -> Int -> [[String]] -> IO ()
done mesg ntest stamps = putStr ( mesg ++ " " ++ show ntest ++ " tests" ++ table )
where
table = display
. map entry
. reverse
. sort
. map pairLength
. group
. sort
. filter (not . null)
$ stamps
display [] = ".\n"
display [x] = " (" ++ x ++ ").\n"
display xs = ".\n" ++ unlines (map (++ ".") xs)
pairLength xss@(xs:_) = (length xss, xs)
entry (n, xs) = percentage n ntest
++ " "
++ concat (intersperse ", " xs)
percentage n m = show ((100 * n) `div` m) ++ "%"
------------------------------------------------------------------------
instance Arbitrary Char where
arbitrary = choose ('a','z')
coarbitrary n = coarbitrary (ord n)
instance Random Word8 where
randomR = integralRandomR
random = randomR (minBound,maxBound)
instance Arbitrary Word8 where
arbitrary = choose (minBound,maxBound)
coarbitrary n = variant (fromIntegral ((fromIntegral n) `rem` 4))
instance Random Word64 where
randomR = integralRandomR
random = randomR (minBound,maxBound)
instance Arbitrary Word64 where
arbitrary = choose (minBound,maxBound)
coarbitrary n = variant (fromIntegral ((fromIntegral n) `rem` 4))
integralRandomR :: (Integral a, RandomGen g) => (a,a) -> g -> (a,g)
integralRandomR (a,b) g = case randomR (fromIntegral a :: Integer,
fromIntegral b :: Integer) g of
(x,g) -> (fromIntegral x, g)
instance Arbitrary Position where
arbitrary = do n <- arbitrary :: Gen Word8
return (fromIntegral n)
coarbitrary = undefined
instance Arbitrary Dimension where
arbitrary = do n <- arbitrary :: Gen Word8
return (fromIntegral n)
coarbitrary = undefined
instance Arbitrary Rectangle where
arbitrary = do
sx <- arbitrary
sy <- arbitrary
sw <- arbitrary
sh <- arbitrary
return $ Rectangle sx sy sw sh
coarbitrary = undefined
instance Arbitrary Rational where
arbitrary = do
n <- arbitrary
d' <- arbitrary
let d = if d' == 0 then 1 else d'
return (n % d)
coarbitrary = undefined
------------------------------------------------------------------------
-- QC 2
-- from QC2
-- | NonEmpty xs: guarantees that xs is non-empty.
newtype NonEmptyList a = NonEmpty [a]
deriving ( Eq, Ord, Show, Read )
instance Arbitrary a => Arbitrary (NonEmptyList a) where
arbitrary = NonEmpty `fmap` (arbitrary `suchThat` (not . null))
coarbitrary = undefined
newtype NonEmptyNubList a = NonEmptyNubList [a]
deriving ( Eq, Ord, Show, Read )
instance (Eq a, Arbitrary a) => Arbitrary (NonEmptyNubList a) where
arbitrary = NonEmptyNubList `fmap` ((liftM nub arbitrary) `suchThat` (not . null))
coarbitrary = undefined
type Positive a = NonZero (NonNegative a)
newtype NonZero a = NonZero a
deriving ( Eq, Ord, Num, Integral, Real, Enum, Show, Read )
instance (Num a, Ord a, Arbitrary a) => Arbitrary (NonZero a) where
arbitrary = fmap NonZero $ arbitrary `suchThat` (/= 0)
coarbitrary = undefined
newtype NonNegative a = NonNegative a
deriving ( Eq, Ord, Num, Integral, Real, Enum, Show, Read )
instance (Num a, Ord a, Arbitrary a) => Arbitrary (NonNegative a) where
arbitrary =
frequency
[ (5, (NonNegative . abs) `fmap` arbitrary)
, (1, return 0)
]
coarbitrary = undefined
newtype EmptyStackSet = EmptyStackSet T deriving Show
instance Arbitrary EmptyStackSet where
arbitrary = do
(NonEmptyNubList ns) <- arbitrary
(NonEmptyNubList sds) <- arbitrary
l <- arbitrary
-- there cannot be more screens than workspaces:
return . EmptyStackSet . new l ns $ take (min (length ns) (length sds)) sds
-- | Generates a value that satisfies a predicate.
suchThat :: Gen a -> (a -> Bool) -> Gen a
gen `suchThat` p =
do mx <- gen `suchThatMaybe` p
case mx of
Just x -> return x
Nothing -> sized (\n -> resize (n+1) (gen `suchThat` p))
-- | Tries to generate a value that satisfies a predicate.
suchThatMaybe :: Gen a -> (a -> Bool) -> Gen (Maybe a)
gen `suchThatMaybe` p = sized (try 0 . max 1)
where
try _ 0 = return Nothing
try k n = do x <- resize (2*k+n) gen
if p x then return (Just x) else try (k+1) (n-1)