aboutsummaryrefslogtreecommitdiffstats
path: root/Game/Code/Classes/URecord.pas
blob: ab351f6eac31e8e74d4d0c20ca04290724a43280 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
unit URecord;

interface

{$IFDEF FPC}
  {$MODE Delphi}
{$ENDIF}

{$I switches.inc}

uses Classes,
     Math,
     SysUtils,
     UCommon,
     UMusic,
     UIni;

//  http://www.poltran.com

type
  TSound = class
    BufferNew:    TMemoryStream; // buffer for newest sample
    BufferArray:  array[1..4096] of smallint; // (Signal) newest 4096 samples
    BufferLong:   array of TMemoryStream;     // full buffer

    Num:          integer;
    n:            integer; // length of Signal to analyze

    // pitch detection
    SzczytJest:   boolean;       // czy jest szczyt
    pivot :       integer;    // Position of summit (top) on horizontal pivot 
    TonDokl:      real;       // ton aktualnego szczytu
    Ton:          integer;    // ton bez ulamka
    TonGamy:      integer;    // ton w gamie. wartosci: 0-11
    Skala:        real;       // skala FFT

    // procedures
    procedure ProcessNewBuffer;
    procedure AnalyzeBuffer;    // use to analyze sound from buffers to get new pitch
    procedure AnalyzeByAutocorrelation;    // we call it to analyze sound by checking Autocorrelation
    function  AnalyzeAutocorrelationFreq(Freq: real): real;   // use this to check one frequency by Autocorrelation
  end;

  TSoundCardInput = record
    Name:   string;
  end;

  TGenericSoundCard = class
    // here can be the soundcard information - whole database from which user will select recording source
    Description:    string;    // soundcard name/description
    Input:          array of TSoundCardInput; // soundcard input(-source)s
    InputSelected:  integer;   // unused. What is this good for?
    MicInput:       integer;   // unused. What is this good for?
    //SampleRate:     integer; // TODO: for sample-rate conversion (for devices that do not support 44.1kHz)
    CaptureSoundLeft:  TSound; // sound(-buffer) used for left channel capture data
    CaptureSoundRight: TSound; // sound(-buffer) used for right channel capture data
  end;

  TAudioInputProcessor = class
    Sound:      array of TSound;
    SoundCard:  array of TGenericSoundCard;

    constructor Create;

    // handle microphone input
    procedure HandleMicrophoneData(Buffer: Pointer; Length: Cardinal;
                                   InputDevice: TGenericSoundCard);

    function volume( aChannel : byte ): byte;
  end;

  smallintarray = array [0..maxInt shr 1-1] of smallInt;
  psmallintarray = ^smallintarray;

  function AudioInputProcessor(): TAudioInputProcessor;

implementation

uses UMain;

var
  singleton_AudioInputProcessor : TAudioInputProcessor = nil;


// FIXME: Race-Conditions between Callback-thread and main-thread
//        on BufferArray (maybe BufferNew also).
//        Use SDL-mutexes to solve this problem.


function AudioInputProcessor(): TAudioInputProcessor;
begin
  if singleton_AudioInputProcessor = nil then
    singleton_AudioInputProcessor := TAudioInputProcessor.create();

  result := singleton_AudioInputProcessor;
 
end;

procedure TSound.ProcessNewBuffer;
var
  S:    integer;
  L:    integer;
  A:    integer;
begin
  // process BufferArray
  S := 0;
  L := BufferNew.Size div 2;
  if L > n then begin
    S := L - n;
    L := n;
  end;

  // copy to array
  for A := L+1 to n do
    BufferArray[A-L] := BufferArray[A];

  BufferNew.Seek(2*S, soBeginning);
  BufferNew.ReadBuffer(BufferArray[1+n-L], 2*L);

  // process BufferLong
  if Ini.SavePlayback = 1 then
  begin
    BufferNew.Seek(0, soBeginning);
    BufferLong[0].CopyFrom(BufferNew, BufferNew.Size);
  end;
end;

procedure TSound.AnalyzeBuffer;
begin
  AnalyzeByAutocorrelation;
end;

procedure TSound.AnalyzeByAutocorrelation;
var
  T:        integer;  // tone
  F:        real; // freq
  Wages:    array[0..35] of real; // wages
  MaxT:     integer; // max tone
  MaxW:     real; // max wage
  V:        real; // volume
  MaxV:     real; // max volume
  S:        integer; // Signal
  Threshold:  real; // threshold
begin
  SzczytJest := false;

  // find maximum volume of first 1024 words of signal
  MaxV := 0;
  for S := 1 to 1024 do // 0.5.2: fix. was from 0 to 1023
  begin
    V  := Abs(BufferArray[S]) / $10000;

    if V > MaxV then
       MaxV := V;
  end;

  // prepare to analyze
  MaxW := 0;

  // analyze all 12 halftones
  for T := 0 to 35 do // to 11, then 23, now 35 (for Whitney and my high voice)
  begin
    F := 130.81 * Power(1.05946309436, T)/2; // let's analyze below 130.81
    Wages[T] := AnalyzeAutocorrelationFreq(F);

    if Wages[T] > MaxW then
    begin // this frequency has better wage
      MaxW := Wages[T];
      MaxT := T;
    end;
  end; // for T

  Threshold := 0.1;
  case Ini.Threshold of
    0:  Threshold := 0.05;
    1:  Threshold := 0.1;
    2:  Threshold := 0.15;
    3:  Threshold := 0.2;
  end;

  if MaxV >= Threshold then
  begin // found acceptable volume // 0.1
    SzczytJest := true;
    TonGamy    := MaxT mod 12;
    Ton        := MaxT mod 12;
  end;

end;

function TSound.AnalyzeAutocorrelationFreq(Freq: real): real; // result medium difference
var
  Count:      real;
  Src:        integer;
  Dst:        integer;
  Move:       integer;
  Il:         integer; // how many counts were done
begin
  // we use Signal as source
  Count := 0;
  Il    := 0;
  Src   := 1;
  Move  := Round(44100/Freq);
  Dst   := Src + Move;

  // ver 2 - compare in vertical
  while (Dst < n) do
  begin // process up to n (4KB) of Signal
    Count := Count + Abs(BufferArray[Src] - BufferArray[Dst]) / $10000;
    Inc(Src);
    Inc(Dst);
    Inc(Il);
  end;

  Result := 1 - Count / Il;
end;

{*
 * Handle captured microphone input data.
 * Params:
 *   Buffer - buffer of signed 16bit interleaved stereo PCM-samples.
 *     Interleaved means that a right-channel sample follows a left-
 *     channel sample and vice versa (0:left[0],1:right[0],2:left[1],...).
 *   Length - number of bytes in Buffer
 *   Input - Soundcard-Input used for capture
 *}
procedure TAudioInputProcessor.HandleMicrophoneData(Buffer: Pointer; Length: Cardinal; InputDevice: TGenericSoundCard);
var
  L:    integer;
  S:    integer;
  PB:   pbytearray;
  PSI:  psmallintarray;
  I:    integer;
  Skip: integer;
  Boost:  byte;
begin
  // set boost
  case Ini.MicBoost of
    0:  Boost := 1;
    1:  Boost := 2;
    2:  Boost := 4;
    3:  Boost := 8;
  end;

  // boost buffer
  L := Length div 2; // number of samples
  PSI := Buffer;
  for S := 0 to L-1 do
  begin
    I := PSI^[S] * Boost;

    // TODO :  JB -  This will clip the audio... cant we reduce the "Boot" if the data clips ??
    if I > 32767 then
      I := 32767; // 0.5.0: limit

    if I < -32768 then
      I := -32768; // 0.5.0: limit

    PSI^[S] := I;
  end;

  // 2 players USB mic, left channel
  if InputDevice.CaptureSoundLeft <> nil then
  begin
    L  := Length div 4; // number of samples
    PB := Buffer;

    InputDevice.CaptureSoundLeft.BufferNew.Clear; // 0.5.2: problem on exiting
    for S := 0 to L-1 do
    begin
      InputDevice.CaptureSoundLeft.BufferNew.Write(PB[S*4], 2);
    end;
    InputDevice.CaptureSoundLeft.ProcessNewBuffer;
  end;

  // 2 players USB mic, right channel
  Skip := 2;

  if InputDevice.CaptureSoundRight <> nil then
  begin
    L := Length div 4; // number of samples
    PB := Buffer;
    InputDevice.CaptureSoundRight.BufferNew.Clear;
    for S := 0 to L-1 do
    begin
      InputDevice.CaptureSoundRight.BufferNew.Write(PB[Skip + S*4], 2);
    end;
    InputDevice.CaptureSoundRight.ProcessNewBuffer;
  end;
end;

constructor TAudioInputProcessor.Create;
var
  S:        integer;
begin
  SetLength(Sound, 6 {max players});//Ini.Players+1);
  for S := 0 to High(Sound) do
  begin //Ini.Players do begin
    Sound[S] := TSound.Create;
    Sound[S].Num := S;
    Sound[S].BufferNew := TMemoryStream.Create;
    SetLength(Sound[S].BufferLong, 1);
    Sound[S].BufferLong[0] := TMemoryStream.Create;
    Sound[S].n := 4*1024;
  end;
end;

function TAudioInputProcessor.volume( aChannel : byte ): byte;
var
  lCount  : Integer;
  lMaxVol : double;
begin;
  lMaxVol :=  AudioInputProcessor.Sound[aChannel].BufferArray[1];
  for lCount := 2 to AudioInputProcessor.Sound[aChannel].n div 1 do
  begin
    if AudioInputProcessor.Sound[aChannel].BufferArray[lCount] > lMaxVol then
      lMaxVol := AudioInputProcessor.Sound[aChannel].BufferArray[lCount];
  end;

  result := trunc( ( 255 / 32767 ) * trunc( lMaxVol ) );
end;

end.