aboutsummaryrefslogtreecommitdiffstats
path: root/infrastructure/rhino1_7R1/src/org/mozilla/javascript/DToA.java
diff options
context:
space:
mode:
authorAlexander Sulfrian <alexander@sulfrian.net>2010-06-08 08:22:05 +0200
committerAlexander Sulfrian <alexander@sulfrian.net>2010-06-08 08:22:05 +0200
commitd7c5ad7d6263fd1baf9bfdbaa4c50b70ef2fbdb2 (patch)
treeae0b65da6432f4c26c8d5a7319efbda5d172846c /infrastructure/rhino1_7R1/src/org/mozilla/javascript/DToA.java
parentfa61221dcd89fcd72cba2c97971626f456c86e5d (diff)
downloadetherpad-d7c5ad7d6263fd1baf9bfdbaa4c50b70ef2fbdb2.tar.gz
etherpad-d7c5ad7d6263fd1baf9bfdbaa4c50b70ef2fbdb2.tar.xz
etherpad-d7c5ad7d6263fd1baf9bfdbaa4c50b70ef2fbdb2.zip
reverted folder structure change for better mergeing with upstream
Diffstat (limited to 'infrastructure/rhino1_7R1/src/org/mozilla/javascript/DToA.java')
-rw-r--r--infrastructure/rhino1_7R1/src/org/mozilla/javascript/DToA.java1271
1 files changed, 0 insertions, 1271 deletions
diff --git a/infrastructure/rhino1_7R1/src/org/mozilla/javascript/DToA.java b/infrastructure/rhino1_7R1/src/org/mozilla/javascript/DToA.java
deleted file mode 100644
index ad2a68a..0000000
--- a/infrastructure/rhino1_7R1/src/org/mozilla/javascript/DToA.java
+++ /dev/null
@@ -1,1271 +0,0 @@
-/* -*- Mode: java; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- *
- * ***** BEGIN LICENSE BLOCK *****
- * Version: MPL 1.1/GPL 2.0
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is Rhino code, released
- * May 6, 1999.
- *
- * The Initial Developer of the Original Code is
- * Netscape Communications Corporation.
- * Portions created by the Initial Developer are Copyright (C) 1997-1999
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- * Waldemar Horwat
- * Roger Lawrence
- * Attila Szegedi
- *
- * Alternatively, the contents of this file may be used under the terms of
- * the GNU General Public License Version 2 or later (the "GPL"), in which
- * case the provisions of the GPL are applicable instead of those above. If
- * you wish to allow use of your version of this file only under the terms of
- * the GPL and not to allow others to use your version of this file under the
- * MPL, indicate your decision by deleting the provisions above and replacing
- * them with the notice and other provisions required by the GPL. If you do
- * not delete the provisions above, a recipient may use your version of this
- * file under either the MPL or the GPL.
- *
- * ***** END LICENSE BLOCK ***** */
-
-/****************************************************************
- *
- * The author of this software is David M. Gay.
- *
- * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose without fee is hereby granted, provided that this entire notice
- * is included in all copies of any software which is or includes a copy
- * or modification of this software and in all copies of the supporting
- * documentation for such software.
- *
- * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
- * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
- * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
- * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
- *
- ***************************************************************/
-
-package org.mozilla.javascript;
-
-import java.math.BigInteger;
-
-class DToA {
-
-
-/* "-0.0000...(1073 zeros after decimal point)...0001\0" is the longest string that we could produce,
- * which occurs when printing -5e-324 in binary. We could compute a better estimate of the size of
- * the output string and malloc fewer bytes depending on d and base, but why bother? */
-
- private static final int DTOBASESTR_BUFFER_SIZE = 1078;
-
- private static char BASEDIGIT(int digit) {
- return (char)((digit >= 10) ? 'a' - 10 + digit : '0' + digit);
- }
-
- static final int
- DTOSTR_STANDARD = 0, /* Either fixed or exponential format; round-trip */
- DTOSTR_STANDARD_EXPONENTIAL = 1, /* Always exponential format; round-trip */
- DTOSTR_FIXED = 2, /* Round to <precision> digits after the decimal point; exponential if number is large */
- DTOSTR_EXPONENTIAL = 3, /* Always exponential format; <precision> significant digits */
- DTOSTR_PRECISION = 4; /* Either fixed or exponential format; <precision> significant digits */
-
-
- private static final int Frac_mask = 0xfffff;
- private static final int Exp_shift = 20;
- private static final int Exp_msk1 = 0x100000;
-
- private static final long Frac_maskL = 0xfffffffffffffL;
- private static final int Exp_shiftL = 52;
- private static final long Exp_msk1L = 0x10000000000000L;
-
- private static final int Bias = 1023;
- private static final int P = 53;
-
- private static final int Exp_shift1 = 20;
- private static final int Exp_mask = 0x7ff00000;
- private static final int Exp_mask_shifted = 0x7ff;
- private static final int Bndry_mask = 0xfffff;
- private static final int Log2P = 1;
-
- private static final int Sign_bit = 0x80000000;
- private static final int Exp_11 = 0x3ff00000;
- private static final int Ten_pmax = 22;
- private static final int Quick_max = 14;
- private static final int Bletch = 0x10;
- private static final int Frac_mask1 = 0xfffff;
- private static final int Int_max = 14;
- private static final int n_bigtens = 5;
-
-
- private static final double tens[] = {
- 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
- 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
- 1e20, 1e21, 1e22
- };
-
- private static final double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
-
- private static int lo0bits(int y)
- {
- int k;
- int x = y;
-
- if ((x & 7) != 0) {
- if ((x & 1) != 0)
- return 0;
- if ((x & 2) != 0) {
- return 1;
- }
- return 2;
- }
- k = 0;
- if ((x & 0xffff) == 0) {
- k = 16;
- x >>>= 16;
- }
- if ((x & 0xff) == 0) {
- k += 8;
- x >>>= 8;
- }
- if ((x & 0xf) == 0) {
- k += 4;
- x >>>= 4;
- }
- if ((x & 0x3) == 0) {
- k += 2;
- x >>>= 2;
- }
- if ((x & 1) == 0) {
- k++;
- x >>>= 1;
- if ((x & 1) == 0)
- return 32;
- }
- return k;
- }
-
- /* Return the number (0 through 32) of most significant zero bits in x. */
- private static int hi0bits(int x)
- {
- int k = 0;
-
- if ((x & 0xffff0000) == 0) {
- k = 16;
- x <<= 16;
- }
- if ((x & 0xff000000) == 0) {
- k += 8;
- x <<= 8;
- }
- if ((x & 0xf0000000) == 0) {
- k += 4;
- x <<= 4;
- }
- if ((x & 0xc0000000) == 0) {
- k += 2;
- x <<= 2;
- }
- if ((x & 0x80000000) == 0) {
- k++;
- if ((x & 0x40000000) == 0)
- return 32;
- }
- return k;
- }
-
- private static void stuffBits(byte bits[], int offset, int val)
- {
- bits[offset] = (byte)(val >> 24);
- bits[offset + 1] = (byte)(val >> 16);
- bits[offset + 2] = (byte)(val >> 8);
- bits[offset + 3] = (byte)(val);
- }
-
- /* Convert d into the form b*2^e, where b is an odd integer. b is the returned
- * Bigint and e is the returned binary exponent. Return the number of significant
- * bits in b in bits. d must be finite and nonzero. */
- private static BigInteger d2b(double d, int[] e, int[] bits)
- {
- byte dbl_bits[];
- int i, k, y, z, de;
- long dBits = Double.doubleToLongBits(d);
- int d0 = (int)(dBits >>> 32);
- int d1 = (int)(dBits);
-
- z = d0 & Frac_mask;
- d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
-
- if ((de = (d0 >>> Exp_shift)) != 0)
- z |= Exp_msk1;
-
- if ((y = d1) != 0) {
- dbl_bits = new byte[8];
- k = lo0bits(y);
- y >>>= k;
- if (k != 0) {
- stuffBits(dbl_bits, 4, y | z << (32 - k));
- z >>= k;
- }
- else
- stuffBits(dbl_bits, 4, y);
- stuffBits(dbl_bits, 0, z);
- i = (z != 0) ? 2 : 1;
- }
- else {
- // JS_ASSERT(z);
- dbl_bits = new byte[4];
- k = lo0bits(z);
- z >>>= k;
- stuffBits(dbl_bits, 0, z);
- k += 32;
- i = 1;
- }
- if (de != 0) {
- e[0] = de - Bias - (P-1) + k;
- bits[0] = P - k;
- }
- else {
- e[0] = de - Bias - (P-1) + 1 + k;
- bits[0] = 32*i - hi0bits(z);
- }
- return new BigInteger(dbl_bits);
- }
-
- static String JS_dtobasestr(int base, double d)
- {
- if (!(2 <= base && base <= 36))
- throw new IllegalArgumentException("Bad base: "+base);
-
- /* Check for Infinity and NaN */
- if (Double.isNaN(d)) {
- return "NaN";
- } else if (Double.isInfinite(d)) {
- return (d > 0.0) ? "Infinity" : "-Infinity";
- } else if (d == 0) {
- // ALERT: should it distinguish -0.0 from +0.0 ?
- return "0";
- }
-
- boolean negative;
- if (d >= 0.0) {
- negative = false;
- } else {
- negative = true;
- d = -d;
- }
-
- /* Get the integer part of d including '-' sign. */
- String intDigits;
-
- double dfloor = Math.floor(d);
- long lfloor = (long)dfloor;
- if (lfloor == dfloor) {
- // int part fits long
- intDigits = Long.toString((negative) ? -lfloor : lfloor, base);
- } else {
- // BigInteger should be used
- long floorBits = Double.doubleToLongBits(dfloor);
- int exp = (int)(floorBits >> Exp_shiftL) & Exp_mask_shifted;
- long mantissa;
- if (exp == 0) {
- mantissa = (floorBits & Frac_maskL) << 1;
- } else {
- mantissa = (floorBits & Frac_maskL) | Exp_msk1L;
- }
- if (negative) {
- mantissa = -mantissa;
- }
- exp -= 1075;
- BigInteger x = BigInteger.valueOf(mantissa);
- if (exp > 0) {
- x = x.shiftLeft(exp);
- } else if (exp < 0) {
- x = x.shiftRight(-exp);
- }
- intDigits = x.toString(base);
- }
-
- if (d == dfloor) {
- // No fraction part
- return intDigits;
- } else {
- /* We have a fraction. */
-
- char[] buffer; /* The output string */
- int p; /* index to current position in the buffer */
- int digit;
- double df; /* The fractional part of d */
- BigInteger b;
-
- buffer = new char[DTOBASESTR_BUFFER_SIZE];
- p = 0;
- df = d - dfloor;
-
- long dBits = Double.doubleToLongBits(d);
- int word0 = (int)(dBits >> 32);
- int word1 = (int)(dBits);
-
- int[] e = new int[1];
- int[] bbits = new int[1];
-
- b = d2b(df, e, bbits);
-// JS_ASSERT(e < 0);
- /* At this point df = b * 2^e. e must be less than zero because 0 < df < 1. */
-
- int s2 = -(word0 >>> Exp_shift1 & Exp_mask >> Exp_shift1);
- if (s2 == 0)
- s2 = -1;
- s2 += Bias + P;
- /* 1/2^s2 = (nextDouble(d) - d)/2 */
-// JS_ASSERT(-s2 < e);
- BigInteger mlo = BigInteger.valueOf(1);
- BigInteger mhi = mlo;
- if ((word1 == 0) && ((word0 & Bndry_mask) == 0)
- && ((word0 & (Exp_mask & Exp_mask << 1)) != 0)) {
- /* The special case. Here we want to be within a quarter of the last input
- significant digit instead of one half of it when the output string's value is less than d. */
- s2 += Log2P;
- mhi = BigInteger.valueOf(1<<Log2P);
- }
-
- b = b.shiftLeft(e[0] + s2);
- BigInteger s = BigInteger.valueOf(1);
- s = s.shiftLeft(s2);
- /* At this point we have the following:
- * s = 2^s2;
- * 1 > df = b/2^s2 > 0;
- * (d - prevDouble(d))/2 = mlo/2^s2;
- * (nextDouble(d) - d)/2 = mhi/2^s2. */
- BigInteger bigBase = BigInteger.valueOf(base);
-
- boolean done = false;
- do {
- b = b.multiply(bigBase);
- BigInteger[] divResult = b.divideAndRemainder(s);
- b = divResult[1];
- digit = (char)(divResult[0].intValue());
- if (mlo == mhi)
- mlo = mhi = mlo.multiply(bigBase);
- else {
- mlo = mlo.multiply(bigBase);
- mhi = mhi.multiply(bigBase);
- }
-
- /* Do we yet have the shortest string that will round to d? */
- int j = b.compareTo(mlo);
- /* j is b/2^s2 compared with mlo/2^s2. */
- BigInteger delta = s.subtract(mhi);
- int j1 = (delta.signum() <= 0) ? 1 : b.compareTo(delta);
- /* j1 is b/2^s2 compared with 1 - mhi/2^s2. */
- if (j1 == 0 && ((word1 & 1) == 0)) {
- if (j > 0)
- digit++;
- done = true;
- } else
- if (j < 0 || (j == 0 && ((word1 & 1) == 0))) {
- if (j1 > 0) {
- /* Either dig or dig+1 would work here as the least significant digit.
- Use whichever would produce an output value closer to d. */
- b = b.shiftLeft(1);
- j1 = b.compareTo(s);
- if (j1 > 0) /* The even test (|| (j1 == 0 && (digit & 1))) is not here because it messes up odd base output
- * such as 3.5 in base 3. */
- digit++;
- }
- done = true;
- } else if (j1 > 0) {
- digit++;
- done = true;
- }
-// JS_ASSERT(digit < (uint32)base);
- buffer[p++] = BASEDIGIT(digit);
- } while (!done);
-
- StringBuffer sb = new StringBuffer(intDigits.length() + 1 + p);
- sb.append(intDigits);
- sb.append('.');
- sb.append(buffer, 0, p);
- return sb.toString();
- }
-
- }
-
- /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
- *
- * Inspired by "How to Print Floating-Point Numbers Accurately" by
- * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
- *
- * Modifications:
- * 1. Rather than iterating, we use a simple numeric overestimate
- * to determine k = floor(log10(d)). We scale relevant
- * quantities using O(log2(k)) rather than O(k) multiplications.
- * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
- * try to generate digits strictly left to right. Instead, we
- * compute with fewer bits and propagate the carry if necessary
- * when rounding the final digit up. This is often faster.
- * 3. Under the assumption that input will be rounded nearest,
- * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
- * That is, we allow equality in stopping tests when the
- * round-nearest rule will give the same floating-point value
- * as would satisfaction of the stopping test with strict
- * inequality.
- * 4. We remove common factors of powers of 2 from relevant
- * quantities.
- * 5. When converting floating-point integers less than 1e16,
- * we use floating-point arithmetic rather than resorting
- * to multiple-precision integers.
- * 6. When asked to produce fewer than 15 digits, we first try
- * to get by with floating-point arithmetic; we resort to
- * multiple-precision integer arithmetic only if we cannot
- * guarantee that the floating-point calculation has given
- * the correctly rounded result. For k requested digits and
- * "uniformly" distributed input, the probability is
- * something like 10^(k-15) that we must resort to the Long
- * calculation.
- */
-
- static int word0(double d)
- {
- long dBits = Double.doubleToLongBits(d);
- return (int)(dBits >> 32);
- }
-
- static double setWord0(double d, int i)
- {
- long dBits = Double.doubleToLongBits(d);
- dBits = ((long)i << 32) | (dBits & 0x0FFFFFFFFL);
- return Double.longBitsToDouble(dBits);
- }
-
- static int word1(double d)
- {
- long dBits = Double.doubleToLongBits(d);
- return (int)(dBits);
- }
-
- /* Return b * 5^k. k must be nonnegative. */
- // XXXX the C version built a cache of these
- static BigInteger pow5mult(BigInteger b, int k)
- {
- return b.multiply(BigInteger.valueOf(5).pow(k));
- }
-
- static boolean roundOff(StringBuffer buf)
- {
- int i = buf.length();
- while (i != 0) {
- --i;
- char c = buf.charAt(i);
- if (c != '9') {
- buf.setCharAt(i, (char)(c + 1));
- buf.setLength(i + 1);
- return false;
- }
- }
- buf.setLength(0);
- return true;
- }
-
- /* Always emits at least one digit. */
- /* If biasUp is set, then rounding in modes 2 and 3 will round away from zero
- * when the number is exactly halfway between two representable values. For example,
- * rounding 2.5 to zero digits after the decimal point will return 3 and not 2.
- * 2.49 will still round to 2, and 2.51 will still round to 3. */
- /* bufsize should be at least 20 for modes 0 and 1. For the other modes,
- * bufsize should be two greater than the maximum number of output characters expected. */
- static int
- JS_dtoa(double d, int mode, boolean biasUp, int ndigits,
- boolean[] sign, StringBuffer buf)
- {
- /* Arguments ndigits, decpt, sign are similar to those
- of ecvt and fcvt; trailing zeros are suppressed from
- the returned string. If not null, *rve is set to point
- to the end of the return value. If d is +-Infinity or NaN,
- then *decpt is set to 9999.
-
- mode:
- 0 ==> shortest string that yields d when read in
- and rounded to nearest.
- 1 ==> like 0, but with Steele & White stopping rule;
- e.g. with IEEE P754 arithmetic , mode 0 gives
- 1e23 whereas mode 1 gives 9.999999999999999e22.
- 2 ==> max(1,ndigits) significant digits. This gives a
- return value similar to that of ecvt, except
- that trailing zeros are suppressed.
- 3 ==> through ndigits past the decimal point. This
- gives a return value similar to that from fcvt,
- except that trailing zeros are suppressed, and
- ndigits can be negative.
- 4-9 should give the same return values as 2-3, i.e.,
- 4 <= mode <= 9 ==> same return as mode
- 2 + (mode & 1). These modes are mainly for
- debugging; often they run slower but sometimes
- faster than modes 2-3.
- 4,5,8,9 ==> left-to-right digit generation.
- 6-9 ==> don't try fast floating-point estimate
- (if applicable).
-
- Values of mode other than 0-9 are treated as mode 0.
-
- Sufficient space is allocated to the return value
- to hold the suppressed trailing zeros.
- */
-
- int b2, b5, i, ieps, ilim, ilim0, ilim1,
- j, j1, k, k0, m2, m5, s2, s5;
- char dig;
- long L;
- long x;
- BigInteger b, b1, delta, mlo, mhi, S;
- int[] be = new int[1];
- int[] bbits = new int[1];
- double d2, ds, eps;
- boolean spec_case, denorm, k_check, try_quick, leftright;
-
- if ((word0(d) & Sign_bit) != 0) {
- /* set sign for everything, including 0's and NaNs */
- sign[0] = true;
- // word0(d) &= ~Sign_bit; /* clear sign bit */
- d = setWord0(d, word0(d) & ~Sign_bit);
- }
- else
- sign[0] = false;
-
- if ((word0(d) & Exp_mask) == Exp_mask) {
- /* Infinity or NaN */
- buf.append(((word1(d) == 0) && ((word0(d) & Frac_mask) == 0)) ? "Infinity" : "NaN");
- return 9999;
- }
- if (d == 0) {
-// no_digits:
- buf.setLength(0);
- buf.append('0'); /* copy "0" to buffer */
- return 1;
- }
-
- b = d2b(d, be, bbits);
- if ((i = (word0(d) >>> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) {
- d2 = setWord0(d, (word0(d) & Frac_mask1) | Exp_11);
- /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
- * log10(x) = log(x) / log(10)
- * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
- * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
- *
- * This suggests computing an approximation k to log10(d) by
- *
- * k = (i - Bias)*0.301029995663981
- * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
- *
- * We want k to be too large rather than too small.
- * The error in the first-order Taylor series approximation
- * is in our favor, so we just round up the constant enough
- * to compensate for any error in the multiplication of
- * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
- * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
- * adding 1e-13 to the constant term more than suffices.
- * Hence we adjust the constant term to 0.1760912590558.
- * (We could get a more accurate k by invoking log10,
- * but this is probably not worthwhile.)
- */
- i -= Bias;
- denorm = false;
- }
- else {
- /* d is denormalized */
- i = bbits[0] + be[0] + (Bias + (P-1) - 1);
- x = (i > 32) ? word0(d) << (64 - i) | word1(d) >>> (i - 32) : word1(d) << (32 - i);
-// d2 = x;
-// word0(d2) -= 31*Exp_msk1; /* adjust exponent */
- d2 = setWord0(x, word0(x) - 31*Exp_msk1);
- i -= (Bias + (P-1) - 1) + 1;
- denorm = true;
- }
- /* At this point d = f*2^i, where 1 <= f < 2. d2 is an approximation of f. */
- ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
- k = (int)ds;
- if (ds < 0.0 && ds != k)
- k--; /* want k = floor(ds) */
- k_check = true;
- if (k >= 0 && k <= Ten_pmax) {
- if (d < tens[k])
- k--;
- k_check = false;
- }
- /* At this point floor(log10(d)) <= k <= floor(log10(d))+1.
- If k_check is zero, we're guaranteed that k = floor(log10(d)). */
- j = bbits[0] - i - 1;
- /* At this point d = b/2^j, where b is an odd integer. */
- if (j >= 0) {
- b2 = 0;
- s2 = j;
- }
- else {
- b2 = -j;
- s2 = 0;
- }
- if (k >= 0) {
- b5 = 0;
- s5 = k;
- s2 += k;
- }
- else {
- b2 -= k;
- b5 = -k;
- s5 = 0;
- }
- /* At this point d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5), where b is an odd integer,
- b2 >= 0, b5 >= 0, s2 >= 0, and s5 >= 0. */
- if (mode < 0 || mode > 9)
- mode = 0;
- try_quick = true;
- if (mode > 5) {
- mode -= 4;
- try_quick = false;
- }
- leftright = true;
- ilim = ilim1 = 0;
- switch(mode) {
- case 0:
- case 1:
- ilim = ilim1 = -1;
- i = 18;
- ndigits = 0;
- break;
- case 2:
- leftright = false;
- /* no break */
- case 4:
- if (ndigits <= 0)
- ndigits = 1;
- ilim = ilim1 = i = ndigits;
- break;
- case 3:
- leftright = false;
- /* no break */
- case 5:
- i = ndigits + k + 1;
- ilim = i;
- ilim1 = i - 1;
- if (i <= 0)
- i = 1;
- }
- /* ilim is the maximum number of significant digits we want, based on k and ndigits. */
- /* ilim1 is the maximum number of significant digits we want, based on k and ndigits,
- when it turns out that k was computed too high by one. */
-
- boolean fast_failed = false;
- if (ilim >= 0 && ilim <= Quick_max && try_quick) {
-
- /* Try to get by with floating-point arithmetic. */
-
- i = 0;
- d2 = d;
- k0 = k;
- ilim0 = ilim;
- ieps = 2; /* conservative */
- /* Divide d by 10^k, keeping track of the roundoff error and avoiding overflows. */
- if (k > 0) {
- ds = tens[k&0xf];
- j = k >> 4;
- if ((j & Bletch) != 0) {
- /* prevent overflows */
- j &= Bletch - 1;
- d /= bigtens[n_bigtens-1];
- ieps++;
- }
- for(; (j != 0); j >>= 1, i++)
- if ((j & 1) != 0) {
- ieps++;
- ds *= bigtens[i];
- }
- d /= ds;
- }
- else if ((j1 = -k) != 0) {
- d *= tens[j1 & 0xf];
- for(j = j1 >> 4; (j != 0); j >>= 1, i++)
- if ((j & 1) != 0) {
- ieps++;
- d *= bigtens[i];
- }
- }
- /* Check that k was computed correctly. */
- if (k_check && d < 1.0 && ilim > 0) {
- if (ilim1 <= 0)
- fast_failed = true;
- else {
- ilim = ilim1;
- k--;
- d *= 10.;
- ieps++;
- }
- }
- /* eps bounds the cumulative error. */
-// eps = ieps*d + 7.0;
-// word0(eps) -= (P-1)*Exp_msk1;
- eps = ieps*d + 7.0;
- eps = setWord0(eps, word0(eps) - (P-1)*Exp_msk1);
- if (ilim == 0) {
- S = mhi = null;
- d -= 5.0;
- if (d > eps) {
- buf.append('1');
- k++;
- return k + 1;
- }
- if (d < -eps) {
- buf.setLength(0);
- buf.append('0'); /* copy "0" to buffer */
- return 1;
- }
- fast_failed = true;
- }
- if (!fast_failed) {
- fast_failed = true;
- if (leftright) {
- /* Use Steele & White method of only
- * generating digits needed.
- */
- eps = 0.5/tens[ilim-1] - eps;
- for(i = 0;;) {
- L = (long)d;
- d -= L;
- buf.append((char)('0' + L));
- if (d < eps) {
- return k + 1;
- }
- if (1.0 - d < eps) {
-// goto bump_up;
- char lastCh;
- while (true) {
- lastCh = buf.charAt(buf.length() - 1);
- buf.setLength(buf.length() - 1);
- if (lastCh != '9') break;
- if (buf.length() == 0) {
- k++;
- lastCh = '0';
- break;
- }
- }
- buf.append((char)(lastCh + 1));
- return k + 1;
- }
- if (++i >= ilim)
- break;
- eps *= 10.0;
- d *= 10.0;
- }
- }
- else {
- /* Generate ilim digits, then fix them up. */
- eps *= tens[ilim-1];
- for(i = 1;; i++, d *= 10.0) {
- L = (long)d;
- d -= L;
- buf.append((char)('0' + L));
- if (i == ilim) {
- if (d > 0.5 + eps) {
-// goto bump_up;
- char lastCh;
- while (true) {
- lastCh = buf.charAt(buf.length() - 1);
- buf.setLength(buf.length() - 1);
- if (lastCh != '9') break;
- if (buf.length() == 0) {
- k++;
- lastCh = '0';
- break;
- }
- }
- buf.append((char)(lastCh + 1));
- return k + 1;
- }
- else
- if (d < 0.5 - eps) {
- stripTrailingZeroes(buf);
-// while(*--s == '0') ;
-// s++;
- return k + 1;
- }
- break;
- }
- }
- }
- }
- if (fast_failed) {
- buf.setLength(0);
- d = d2;
- k = k0;
- ilim = ilim0;
- }
- }
-
- /* Do we have a "small" integer? */
-
- if (be[0] >= 0 && k <= Int_max) {
- /* Yes. */
- ds = tens[k];
- if (ndigits < 0 && ilim <= 0) {
- S = mhi = null;
- if (ilim < 0 || d < 5*ds || (!biasUp && d == 5*ds)) {
- buf.setLength(0);
- buf.append('0'); /* copy "0" to buffer */
- return 1;
- }
- buf.append('1');
- k++;
- return k + 1;
- }
- for(i = 1;; i++) {
- L = (long) (d / ds);
- d -= L*ds;
- buf.append((char)('0' + L));
- if (i == ilim) {
- d += d;
- if ((d > ds) || (d == ds && (((L & 1) != 0) || biasUp))) {
-// bump_up:
-// while(*--s == '9')
-// if (s == buf) {
-// k++;
-// *s = '0';
-// break;
-// }
-// ++*s++;
- char lastCh;
- while (true) {
- lastCh = buf.charAt(buf.length() - 1);
- buf.setLength(buf.length() - 1);
- if (lastCh != '9') break;
- if (buf.length() == 0) {
- k++;
- lastCh = '0';
- break;
- }
- }
- buf.append((char)(lastCh + 1));
- }
- break;
- }
- d *= 10.0;
- if (d == 0)
- break;
- }
- return k + 1;
- }
-
- m2 = b2;
- m5 = b5;
- mhi = mlo = null;
- if (leftright) {
- if (mode < 2) {
- i = (denorm) ? be[0] + (Bias + (P-1) - 1 + 1) : 1 + P - bbits[0];
- /* i is 1 plus the number of trailing zero bits in d's significand. Thus,
- (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 lsb of d)/10^k. */
- }
- else {
- j = ilim - 1;
- if (m5 >= j)
- m5 -= j;
- else {
- s5 += j -= m5;
- b5 += j;
- m5 = 0;
- }
- if ((i = ilim) < 0) {
- m2 -= i;
- i = 0;
- }
- /* (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 * 10^(1-ilim))/10^k. */
- }
- b2 += i;
- s2 += i;
- mhi = BigInteger.valueOf(1);
- /* (mhi * 2^m2 * 5^m5) / (2^s2 * 5^s5) = one-half of last printed (when mode >= 2) or
- input (when mode < 2) significant digit, divided by 10^k. */
- }
- /* We still have d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5). Reduce common factors in
- b2, m2, and s2 without changing the equalities. */
- if (m2 > 0 && s2 > 0) {
- i = (m2 < s2) ? m2 : s2;
- b2 -= i;
- m2 -= i;
- s2 -= i;
- }
-
- /* Fold b5 into b and m5 into mhi. */
- if (b5 > 0) {
- if (leftright) {
- if (m5 > 0) {
- mhi = pow5mult(mhi, m5);
- b1 = mhi.multiply(b);
- b = b1;
- }
- if ((j = b5 - m5) != 0)
- b = pow5mult(b, j);
- }
- else
- b = pow5mult(b, b5);
- }
- /* Now we have d/10^k = (b * 2^b2) / (2^s2 * 5^s5) and
- (mhi * 2^m2) / (2^s2 * 5^s5) = one-half of last printed or input significant digit, divided by 10^k. */
-
- S = BigInteger.valueOf(1);
- if (s5 > 0)
- S = pow5mult(S, s5);
- /* Now we have d/10^k = (b * 2^b2) / (S * 2^s2) and
- (mhi * 2^m2) / (S * 2^s2) = one-half of last printed or input significant digit, divided by 10^k. */
-
- /* Check for special case that d is a normalized power of 2. */
- spec_case = false;
- if (mode < 2) {
- if ( (word1(d) == 0) && ((word0(d) & Bndry_mask) == 0)
- && ((word0(d) & (Exp_mask & Exp_mask << 1)) != 0)
- ) {
- /* The special case. Here we want to be within a quarter of the last input
- significant digit instead of one half of it when the decimal output string's value is less than d. */
- b2 += Log2P;
- s2 += Log2P;
- spec_case = true;
- }
- }
-
- /* Arrange for convenient computation of quotients:
- * shift left if necessary so divisor has 4 leading 0 bits.
- *
- * Perhaps we should just compute leading 28 bits of S once
- * and for all and pass them and a shift to quorem, so it
- * can do shifts and ors to compute the numerator for q.
- */
- byte [] S_bytes = S.toByteArray();
- int S_hiWord = 0;
- for (int idx = 0; idx < 4; idx++) {
- S_hiWord = (S_hiWord << 8);
- if (idx < S_bytes.length)
- S_hiWord |= (S_bytes[idx] & 0xFF);
- }
- if ((i = (((s5 != 0) ? 32 - hi0bits(S_hiWord) : 1) + s2) & 0x1f) != 0)
- i = 32 - i;
- /* i is the number of leading zero bits in the most significant word of S*2^s2. */
- if (i > 4) {
- i -= 4;
- b2 += i;
- m2 += i;
- s2 += i;
- }
- else if (i < 4) {
- i += 28;
- b2 += i;
- m2 += i;
- s2 += i;
- }
- /* Now S*2^s2 has exactly four leading zero bits in its most significant word. */
- if (b2 > 0)
- b = b.shiftLeft(b2);
- if (s2 > 0)
- S = S.shiftLeft(s2);
- /* Now we have d/10^k = b/S and
- (mhi * 2^m2) / S = maximum acceptable error, divided by 10^k. */
- if (k_check) {
- if (b.compareTo(S) < 0) {
- k--;
- b = b.multiply(BigInteger.valueOf(10)); /* we botched the k estimate */
- if (leftright)
- mhi = mhi.multiply(BigInteger.valueOf(10));
- ilim = ilim1;
- }
- }
- /* At this point 1 <= d/10^k = b/S < 10. */
-
- if (ilim <= 0 && mode > 2) {
- /* We're doing fixed-mode output and d is less than the minimum nonzero output in this mode.
- Output either zero or the minimum nonzero output depending on which is closer to d. */
- if ((ilim < 0 )
- || ((i = b.compareTo(S = S.multiply(BigInteger.valueOf(5)))) < 0)
- || ((i == 0 && !biasUp))) {
- /* Always emit at least one digit. If the number appears to be zero
- using the current mode, then emit one '0' digit and set decpt to 1. */
- /*no_digits:
- k = -1 - ndigits;
- goto ret; */
- buf.setLength(0);
- buf.append('0'); /* copy "0" to buffer */
- return 1;
-// goto no_digits;
- }
-// one_digit:
- buf.append('1');
- k++;
- return k + 1;
- }
- if (leftright) {
- if (m2 > 0)
- mhi = mhi.shiftLeft(m2);
-
- /* Compute mlo -- check for special case
- * that d is a normalized power of 2.
- */
-
- mlo = mhi;
- if (spec_case) {
- mhi = mlo;
- mhi = mhi.shiftLeft(Log2P);
- }
- /* mlo/S = maximum acceptable error, divided by 10^k, if the output is less than d. */
- /* mhi/S = maximum acceptable error, divided by 10^k, if the output is greater than d. */
-
- for(i = 1;;i++) {
- BigInteger[] divResult = b.divideAndRemainder(S);
- b = divResult[1];
- dig = (char)(divResult[0].intValue() + '0');
- /* Do we yet have the shortest decimal string
- * that will round to d?
- */
- j = b.compareTo(mlo);
- /* j is b/S compared with mlo/S. */
- delta = S.subtract(mhi);
- j1 = (delta.signum() <= 0) ? 1 : b.compareTo(delta);
- /* j1 is b/S compared with 1 - mhi/S. */
- if ((j1 == 0) && (mode == 0) && ((word1(d) & 1) == 0)) {
- if (dig == '9') {
- buf.append('9');
- if (roundOff(buf)) {
- k++;
- buf.append('1');
- }
- return k + 1;
-// goto round_9_up;
- }
- if (j > 0)
- dig++;
- buf.append(dig);
- return k + 1;
- }
- if ((j < 0)
- || ((j == 0)
- && (mode == 0)
- && ((word1(d) & 1) == 0)
- )) {
- if (j1 > 0) {
- /* Either dig or dig+1 would work here as the least significant decimal digit.
- Use whichever would produce a decimal value closer to d. */
- b = b.shiftLeft(1);
- j1 = b.compareTo(S);
- if (((j1 > 0) || (j1 == 0 && (((dig & 1) == 1) || biasUp)))
- && (dig++ == '9')) {
- buf.append('9');
- if (roundOff(buf)) {
- k++;
- buf.append('1');
- }
- return k + 1;
-// goto round_9_up;
- }
- }
- buf.append(dig);
- return k + 1;
- }
- if (j1 > 0) {
- if (dig == '9') { /* possible if i == 1 */
-// round_9_up:
-// *s++ = '9';
-// goto roundoff;
- buf.append('9');
- if (roundOff(buf)) {
- k++;
- buf.append('1');
- }
- return k + 1;
- }
- buf.append((char)(dig + 1));
- return k + 1;
- }
- buf.append(dig);
- if (i == ilim)
- break;
- b = b.multiply(BigInteger.valueOf(10));
- if (mlo == mhi)
- mlo = mhi = mhi.multiply(BigInteger.valueOf(10));
- else {
- mlo = mlo.multiply(BigInteger.valueOf(10));
- mhi = mhi.multiply(BigInteger.valueOf(10));
- }
- }
- }
- else
- for(i = 1;; i++) {
-// (char)(dig = quorem(b,S) + '0');
- BigInteger[] divResult = b.divideAndRemainder(S);
- b = divResult[1];
- dig = (char)(divResult[0].intValue() + '0');
- buf.append(dig);
- if (i >= ilim)
- break;
- b = b.multiply(BigInteger.valueOf(10));
- }
-
- /* Round off last digit */
-
- b = b.shiftLeft(1);
- j = b.compareTo(S);
- if ((j > 0) || (j == 0 && (((dig & 1) == 1) || biasUp))) {
-// roundoff:
-// while(*--s == '9')
-// if (s == buf) {
-// k++;
-// *s++ = '1';
-// goto ret;
-// }
-// ++*s++;
- if (roundOff(buf)) {
- k++;
- buf.append('1');
- return k + 1;
- }
- }
- else {
- stripTrailingZeroes(buf);
-// while(*--s == '0') ;
-// s++;
- }
-// ret:
-// Bfree(S);
-// if (mhi) {
-// if (mlo && mlo != mhi)
-// Bfree(mlo);
-// Bfree(mhi);
-// }
-// ret1:
-// Bfree(b);
-// JS_ASSERT(s < buf + bufsize);
- return k + 1;
- }
-
- private static void
- stripTrailingZeroes(StringBuffer buf)
- {
-// while(*--s == '0') ;
-// s++;
- int bl = buf.length();
- while(bl-->0 && buf.charAt(bl) == '0') {
- // empty
- }
- buf.setLength(bl + 1);
- }
-
- /* Mapping of JSDToStrMode -> JS_dtoa mode */
- private static final int dtoaModes[] = {
- 0, /* DTOSTR_STANDARD */
- 0, /* DTOSTR_STANDARD_EXPONENTIAL, */
- 3, /* DTOSTR_FIXED, */
- 2, /* DTOSTR_EXPONENTIAL, */
- 2}; /* DTOSTR_PRECISION */
-
- static void
- JS_dtostr(StringBuffer buffer, int mode, int precision, double d)
- {
- int decPt; /* Position of decimal point relative to first digit returned by JS_dtoa */
- boolean[] sign = new boolean[1]; /* true if the sign bit was set in d */
- int nDigits; /* Number of significand digits returned by JS_dtoa */
-
-// JS_ASSERT(bufferSize >= (size_t)(mode <= DTOSTR_STANDARD_EXPONENTIAL ? DTOSTR_STANDARD_BUFFER_SIZE :
-// DTOSTR_VARIABLE_BUFFER_SIZE(precision)));
-
- if (mode == DTOSTR_FIXED && (d >= 1e21 || d <= -1e21))
- mode = DTOSTR_STANDARD; /* Change mode here rather than below because the buffer may not be large enough to hold a large integer. */
-
- decPt = JS_dtoa(d, dtoaModes[mode], mode >= DTOSTR_FIXED, precision, sign, buffer);
- nDigits = buffer.length();
-
- /* If Infinity, -Infinity, or NaN, return the string regardless of the mode. */
- if (decPt != 9999) {
- boolean exponentialNotation = false;
- int minNDigits = 0; /* Minimum number of significand digits required by mode and precision */
- int p;
-
- switch (mode) {
- case DTOSTR_STANDARD:
- if (decPt < -5 || decPt > 21)
- exponentialNotation = true;
- else
- minNDigits = decPt;
- break;
-
- case DTOSTR_FIXED:
- if (precision >= 0)
- minNDigits = decPt + precision;
- else
- minNDigits = decPt;
- break;
-
- case DTOSTR_EXPONENTIAL:
-// JS_ASSERT(precision > 0);
- minNDigits = precision;
- /* Fall through */
- case DTOSTR_STANDARD_EXPONENTIAL:
- exponentialNotation = true;
- break;
-
- case DTOSTR_PRECISION:
-// JS_ASSERT(precision > 0);
- minNDigits = precision;
- if (decPt < -5 || decPt > precision)
- exponentialNotation = true;
- break;
- }
-
- /* If the number has fewer than minNDigits, pad it with zeros at the end */
- if (nDigits < minNDigits) {
- p = minNDigits;
- nDigits = minNDigits;
- do {
- buffer.append('0');
- } while (buffer.length() != p);
- }
-
- if (exponentialNotation) {
- /* Insert a decimal point if more than one significand digit */
- if (nDigits != 1) {
- buffer.insert(1, '.');
- }
- buffer.append('e');
- if ((decPt - 1) >= 0)
- buffer.append('+');
- buffer.append(decPt - 1);
-// JS_snprintf(numEnd, bufferSize - (numEnd - buffer), "e%+d", decPt-1);
- } else if (decPt != nDigits) {
- /* Some kind of a fraction in fixed notation */
-// JS_ASSERT(decPt <= nDigits);
- if (decPt > 0) {
- /* dd...dd . dd...dd */
- buffer.insert(decPt, '.');
- } else {
- /* 0 . 00...00dd...dd */
- for (int i = 0; i < 1 - decPt; i++)
- buffer.insert(0, '0');
- buffer.insert(1, '.');
- }
- }
- }
-
- /* If negative and neither -0.0 nor NaN, output a leading '-'. */
- if (sign[0] &&
- !(word0(d) == Sign_bit && word1(d) == 0) &&
- !((word0(d) & Exp_mask) == Exp_mask &&
- ((word1(d) != 0) || ((word0(d) & Frac_mask) != 0)))) {
- buffer.insert(0, '-');
- }
- }
-
-}
-