1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
|
{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses #-}
-----------------------------------------------------------------------------
-- |
-- Module : XMonad.Layout.ThreeColumns
-- Copyright : (c) Kai Grossjohann <kai@emptydomain.de>
-- License : BSD3-style (see LICENSE)
--
-- Maintainer : ?
-- Stability : unstable
-- Portability : unportable
--
-- A layout similar to tall but with three columns.
--
-----------------------------------------------------------------------------
module XMonad.Layout.ThreeColumns (
-- * Usage
-- $usage
ThreeCol(..)
) where
import XMonad
import qualified XMonad.StackSet as W
import XMonad.Layouts ( Resize(..), IncMasterN(..), splitVertically, splitHorizontallyBy )
import Data.Ratio
--import Control.Monad.State
import Control.Monad.Reader
import Graphics.X11.Xlib
-- $usage
--
-- You can use this module with the following in your Config.hs file:
--
-- > import XMonad.Layout.ThreeColumns
--
-- and add, to the list of layouts:
--
-- > ThreeCol nmaster delta ratio
-- %import XMonad.Layout.ThreeColumns
-- %layout , ThreeCol nmaster delta ratio
data ThreeCol a = ThreeCol Int Rational Rational deriving (Show,Read)
instance LayoutClass ThreeCol a where
doLayout (ThreeCol nmaster _ frac) r =
return . (\x->(x,Nothing)) .
ap zip (tile3 frac r nmaster . length) . W.integrate
handleMessage (ThreeCol nmaster delta frac) m =
return $ msum [fmap resize (fromMessage m)
,fmap incmastern (fromMessage m)]
where resize Shrink = ThreeCol nmaster delta (max 0 $ frac-delta)
resize Expand = ThreeCol nmaster delta (min 1 $ frac+delta)
incmastern (IncMasterN d) = ThreeCol (max 0 (nmaster+d)) delta frac
description _ = "ThreeCol"
-- | tile3. Compute window positions using 3 panes
tile3 :: Rational -> Rectangle -> Int -> Int -> [Rectangle]
tile3 f r nmaster n
| n <= nmaster || nmaster == 0 = splitVertically n r
| n <= nmaster+1 = splitVertically nmaster s1 ++ splitVertically (n-nmaster) s2
| otherwise = splitVertically nmaster r1 ++ splitVertically nmid r2 ++ splitVertically nright r3
where (r1, r2, r3) = split3HorizontallyBy f r
(s1, s2) = splitHorizontallyBy f r
nslave = (n - nmaster)
nmid = ceiling (nslave % 2)
nright = (n - nmaster - nmid)
split3HorizontallyBy :: Rational -> Rectangle -> (Rectangle, Rectangle, Rectangle)
split3HorizontallyBy f (Rectangle sx sy sw sh) =
( Rectangle sx sy leftw sh
, Rectangle (sx + fromIntegral leftw) sy midw sh
, Rectangle (sx + fromIntegral leftw + fromIntegral midw) sy rightw sh )
where leftw = ceiling $ fromIntegral sw * (2/3) * f
midw = ceiling ( (sw - leftw) % 2 )
rightw = sw - leftw - midw
|