1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
|
{-# LANGUAGE MultiParamTypeClasses, TypeSynonymInstances #-}
-----------------------------------------------------------------------------
-- |
-- Module : XMonad.Layout.HintedTile
-- Copyright : (c) Peter De Wachter <pdewacht@gmail.com>
-- License : BSD3-style (see LICENSE)
--
-- Maintainer : Peter De Wachter <pdewacht@gmail.com>
-- Andrea Rossato <andrea.rossato@unibz.it>
-- Stability : unstable
-- Portability : unportable
--
-- A gapless tiled layout that attempts to obey window size hints,
-- rather than simply ignoring them.
--
-----------------------------------------------------------------------------
module XMonad.Layout.HintedTile (
-- * Usage
-- $usage
HintedTile(..), Orientation(..), Alignment(..)
) where
import XMonad hiding (Tall(..))
import qualified XMonad.StackSet as W
import Control.Monad
-- $usage
-- You can use this module with the following in your @~\/.xmonad\/xmonad.hs@:
--
-- > import XMonad.Layout.HintedTile
--
-- Then edit your @layoutHook@ by adding the HintedTile layout:
--
-- > myLayouts = HintedTile 1 0.1 0.5 TopLeft Tall ||| Full ||| etc..
-- > main = xmonad defaultConfig { layoutHook = myLayouts }
--
-- For more detailed instructions on editing the layoutHook see:
--
-- "XMonad.Doc.Extending#Editing_the_layout_hook"
data HintedTile a = HintedTile
{ nmaster :: Int
, delta, frac :: Rational
, alignment :: Alignment
, orientation :: Orientation
} deriving ( Show, Read )
data Orientation = Wide | Tall
deriving ( Show, Read, Eq, Ord )
data Alignment = TopLeft | Center | BottomRight
deriving ( Show, Read, Eq, Ord )
instance LayoutClass HintedTile Window where
doLayout (HintedTile { orientation = o, nmaster = nm, frac = f, alignment = al }) r w' = do
bhs <- mapM mkAdjust w
let (masters, slaves) = splitAt nm bhs
return (zip w (tiler masters slaves), Nothing)
where
w = W.integrate w'
tiler masters slaves
| null masters || null slaves = divide al o (masters ++ slaves) r
| otherwise = split o f r (divide al o masters) (divide al o slaves)
pureMessage c m = fmap resize (fromMessage m) `mplus`
fmap incmastern (fromMessage m)
where
resize Shrink = c { frac = max 0 $ frac c - delta c }
resize Expand = c { frac = min 1 $ frac c + delta c }
incmastern (IncMasterN d) = c { nmaster = max 0 $ nmaster c + d }
description l = show (orientation l)
align :: Alignment -> Position -> Dimension -> Dimension -> Position
align TopLeft p _ _ = p
align Center p a b = p + fromIntegral (a - b) `div` 2
align BottomRight p a b = p + fromIntegral (a - b)
-- Divide the screen vertically (horizontally) into n subrectangles
divide :: Alignment -> Orientation -> [D -> D] -> Rectangle -> [Rectangle]
divide _ _ [] _ = []
divide al _ [bh] (Rectangle sx sy sw sh) = [Rectangle (align al sx sw w) (align al sy sh h) w h]
where
(w, h) = bh (sw, sh)
divide al Tall (bh:bhs) (Rectangle sx sy sw sh) = (Rectangle (align al sx sw w) sy w h) :
(divide al Tall bhs (Rectangle sx (sy + fromIntegral h) sw (sh - h)))
where
(w, h) = bh (sw, sh `div` fromIntegral (1 + (length bhs)))
divide al Wide (bh:bhs) (Rectangle sx sy sw sh) = (Rectangle sx (align al sy sh h) w h) :
(divide al Wide bhs (Rectangle (sx + fromIntegral w) sy (sw - w) sh))
where
(w, h) = bh (sw `div` fromIntegral (1 + (length bhs)), sh)
-- Split the screen into two rectangles, using a rational to specify the ratio
split :: Orientation -> Rational -> Rectangle -> (Rectangle -> [Rectangle])
-> (Rectangle -> [Rectangle]) -> [Rectangle]
split Tall f (Rectangle sx sy sw sh) left right = leftRects ++ rightRects
where
leftw = floor $ fromIntegral sw * f
leftRects = left $ Rectangle sx sy leftw sh
rightx = (maximum . map rect_width) leftRects
rightRects = right $ Rectangle (sx + fromIntegral rightx) sy (sw - rightx) sh
split Wide f (Rectangle sx sy sw sh) top bottom = topRects ++ bottomRects
where
toph = floor $ fromIntegral sh * f
topRects = top $ Rectangle sx sy sw toph
bottomy = (maximum . map rect_height) topRects
bottomRects = bottom $ Rectangle sx (sy + fromIntegral bottomy) sw (sh - bottomy)
|