1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
|
module XMonadContrib.Spiral (spiral) where
import Graphics.X11.Xlib
import Operations
import Data.Ratio
import XMonad
import qualified StackSet as W
--
-- Spiral layout
--
-- eg,
-- defaultLayouts :: [Layout]
-- defaultLayouts = [ full,
-- tall defaultWindowsInMaster defaultDelta (1%2),
-- wide defaultWindowsInMaster defaultDelta (1%2),
-- spiral (1 % 1) ]
--
fibs :: [Integer]
fibs = 1 : 1 : (zipWith (+) fibs (tail fibs))
mkRatios :: [Integer] -> [Rational]
mkRatios (x1:x2:xs) = (x1 % x2) : mkRatios (x2:xs)
mkRatios _ = []
data Direction = East | South | West | North deriving (Enum)
blend :: Rational -> [Rational] -> [Rational]
blend scale ratios = zipWith (+) ratios scaleFactors
where
len = length ratios
step = (scale - (1 % 1)) / (fromIntegral len)
scaleFactors = map (* step) . reverse . take len $ [0..]
spiral :: Rational -> Layout
spiral scale = Layout { doLayout = \r -> fibLayout r . W.integrate,
modifyLayout = \m -> return $ fmap resize $ fromMessage m }
where
fibLayout sc ws = return $ zip ws rects
where ratios = blend scale . reverse . take (length ws - 1) . mkRatios $ tail fibs
rects = divideRects (zip ratios (cycle [East .. North])) sc
resize Expand = spiral $ (21 % 20) * scale
resize Shrink = spiral $ (20 % 21) * scale
-- This will produce one more rectangle than there are splits details
divideRects :: [(Rational, Direction)] -> Rectangle -> [Rectangle]
divideRects [] r = [r]
divideRects ((r,d):xs) rect = case divideRect r d rect of
(r1, r2) -> r1 : (divideRects xs r2)
-- It's much simpler if we work with all Integers and convert to
-- Rectangle at the end.
data Rect = Rect Integer Integer Integer Integer
fromRect :: Rect -> Rectangle
fromRect (Rect x y w h) = Rectangle (fromIntegral x) (fromIntegral y) (fromIntegral w) (fromIntegral h)
toRect :: Rectangle -> Rect
toRect (Rectangle x y w h) = Rect (fromIntegral x) (fromIntegral y) (fromIntegral w) (fromIntegral h)
divideRect :: Rational -> Direction -> Rectangle -> (Rectangle, Rectangle)
divideRect r d rect = let (r1, r2) = divideRect' r d $ toRect rect in
(fromRect r1, fromRect r2)
divideRect' :: Rational -> Direction -> Rect -> (Rect, Rect)
divideRect' ratio dir (Rect x y w h) =
case dir of
East -> let (w1, w2) = chop ratio w in (Rect x y w1 h, Rect (x + w1) y w2 h)
South -> let (h1, h2) = chop ratio h in (Rect x y w h1, Rect x (y + h1) w h2)
West -> let (w1, w2) = chop (1 - ratio) w in (Rect (x + w1) y w2 h, Rect x y w1 h)
North -> let (h1, h2) = chop (1 - ratio) h in (Rect x (y + h1) w h2, Rect x y w h1)
chop :: Rational -> Integer -> (Integer, Integer)
chop rat n = let f = ((fromIntegral n) * (numerator rat)) `div` (denominator rat) in
(f, n - f)
|