blob: 8dd542252d9e97a1776986e7abe16893295046aa (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
|
-----------------------------------------------------------------------------
-- |
-- Module : XMonadContrib.Roledex
-- Copyright : (c) tim.thelion@gmail.com
-- License : BSD Because this is dirived from Accordian which is licenced that way.
-- The maintainer of Accordian is glasser@mit.edu
--
-- Maintainer : tim.thelion@gmail.com
-- Stability : unstable
-- Portability : unportable
--
-- Screenshot : www.timthelion.com/rolodex.png
-- This is a compleatly pointless layout which acts like Microsoft's Flip 3D
-----------------------------------------------------------------------------
module XMonadContrib.Roledex (
-- * Usage
-- $usage
roledex) where
import XMonad
import Operations
import qualified StackSet as W
import Graphics.X11.Xlib
import Data.Ratio
import XMonadContrib.LayoutHelpers ( idModify )
-- $usage
-- > import XMonadContrib.Roledex
-- > defaultLayouts = [ roledex ]
roledex :: Eq a => Layout a
roledex = Layout { doLayout = roledexLayout, modifyLayout = idModify }
roledexLayout :: Eq a => Rectangle -> W.Stack a -> X ([(a, Rectangle)], Maybe (Layout a))
roledexLayout sc ws = return ([(W.focus ws, mainPane)] ++
(zip ups tops) ++
(reverse (zip dns bottoms))
,Nothing)
where ups = W.up ws
dns = W.down ws
c = length ups + length dns
rect = fst $ splitHorizontallyBy (2% 3) $ fst (splitVerticallyBy (2% 3) sc)
gw = div' (w - rw) (fromIntegral c)
where
(Rectangle _ _ w _) = sc
(Rectangle _ _ rw _) = rect
gh = div' (h - rh) (fromIntegral c)
where
(Rectangle _ _ _ h) = sc
(Rectangle _ _ _ rh) = rect
mainPane = mrect (gw * fromIntegral c) (gh * fromIntegral c) rect
mrect mx my (Rectangle x y w h) = Rectangle (x + (fromIntegral mx)) (y + (fromIntegral my)) w h
tops = map f $ cd c (length dns)
bottoms = map f $ [0..(length dns)]
f n = mrect (gw * (fromIntegral n)) (gh * (fromIntegral n)) rect
cd n m = if n > m
then (n - 1) : (cd (n-1) m)
else []
div' _ 0 = 0
div' n o = div n o
|