blob: 41c82f99fcad45203bd053cc23dd7830853a0d48 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
|
--
-- DynamicLog
--
-- Log events in:
--
-- 1 2 [3] 4 8
--
-- format. suitable to pipe into dzen.
--
-- To use, set:
--
-- import XMonadContrib.DynamicLog
-- logHook = dynamicLog
--
-- Don Stewart
module XMonadContrib.DynamicLog (dynamicLog, dynamicLogXinerama) where
--
-- Useful imports
--
import XMonad
import Data.Maybe ( isJust )
import Data.List
import qualified StackSet as S
--
-- Perform an arbitrary action on each state change.
-- Examples include:
-- * do nothing
-- * log the state to stdout
--
-- An example logger, print a status bar output to dzen, in the form:
--
-- 1 2 [3] 4 7
--
dynamicLog :: X ()
dynamicLog = withWindowSet $ io . putStrLn . ppr
where
ppr s = concatMap fmt $ sortBy (compare `on` S.tag)
(map S.workspace (S.current s : S.visible s) ++ S.hidden s)
where this = S.tag (S.workspace (S.current s))
visibles = map (S.tag . S.workspace) (S.visible s)
fmt w | S.tag w == this = "[" ++ pprTag w ++ "]"
| S.tag w `elem` visibles = "<" ++ pprTag w ++ ">"
| isJust (S.stack w) = " " ++ pprTag w ++ " "
| otherwise = ""
--
-- Workspace logger with a format designed for Xinerama:
--
-- [1 9 3] 2 7
--
-- where 1, 9, and 3 are the workspaces on screens 1, 2 and 3, respectively,
-- and 2 and 7 are non-visible, non-empty workspaces
--
dynamicLogXinerama :: X ()
dynamicLogXinerama = withWindowSet $ io . putStrLn . ppr
where
ppr ws = "[" ++ unwords onscreen ++ "] " ++ unwords offscreen
where onscreen = map (pprTag . S.workspace)
. sortBy (compare `on` S.screen) $ S.current ws : S.visible ws
offscreen = map pprTag . filter (isJust . S.stack)
. sortBy (compare `on` S.tag) $ S.hidden ws
-- util functions
pprTag :: Integral i => S.Workspace i a -> String
pprTag = show . (+(1::Int)) . fromIntegral . S.tag
on :: (a -> a -> c) -> (b -> a) -> b -> b -> c
on f g a b = (g a) `f` (g b)
|