{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses #-}
-----------------------------------------------------------------------------
-- |
-- Module : XMonad.Layout.Spiral
-- Copyright : (c) Joe Thornber <joe.thornber@gmail.com>
-- License : BSD3-style (see LICENSE)
--
-- Maintainer : Joe Thornber <joe.thornber@gmail.com>
-- Stability : stable
-- Portability : portable
--
-- A spiral tiling layout.
--
-----------------------------------------------------------------------------
module XMonad.Layout.Spiral (
-- * Usage
-- $usage
spiral
, spiralWithDir
, Rotation (..)
, Direction (..)
, SpiralWithDir
) where
import Data.Ratio
import XMonad hiding ( Rotation )
import XMonad.StackSet ( integrate )
-- $usage
-- You can use this module with the following in your @~\/.xmonad\/xmonad.hs@:
--
-- > import XMonad.Layout.Spiral
--
-- Then edit your @layoutHook@ by adding the Spiral layout:
--
-- > myLayout = spiral (6/7) ||| etc..
-- > main = xmonad def { layoutHook = myLayout }
--
-- For more detailed instructions on editing the layoutHook see:
--
-- "XMonad.Doc.Extending#Editing_the_layout_hook"
fibs :: [Integer]
fibs = 1 : 1 : zipWith (+) fibs (tail fibs)
mkRatios :: [Integer] -> [Rational]
mkRatios (x1:x2:xs) = (x1 % x2) : mkRatios (x2:xs)
mkRatios _ = []
data Rotation = CW | CCW deriving (Read, Show)
data Direction = East | South | West | North deriving (Eq, Enum, Read, Show)
blend :: Rational -> [Rational] -> [Rational]
blend scale ratios = zipWith (+) ratios scaleFactors
where
len = length ratios
step = (scale - (1 % 1)) / (fromIntegral len)
scaleFactors = map (* step) . reverse . take len $ [0..]
-- | A spiral layout. The parameter controls the size ratio between
-- successive windows in the spiral. Sensible values range from 0
-- up to the aspect ratio of your monitor (often 4\/3).
--
-- By default, the spiral is counterclockwise, starting to the east.
-- See also 'spiralWithDir'.
spiral :: Rational -> SpiralWithDir a
spiral = spiralWithDir East CW
-- | Create a spiral layout, specifying the starting cardinal direction,
-- the spiral direction (clockwise or counterclockwise), and the
-- size ratio.
spiralWithDir :: Direction -> Rotation -> Rational -> SpiralWithDir a
spiralWithDir = SpiralWithDir
data SpiralWithDir a = SpiralWithDir Direction Rotation Rational
deriving ( Read, Show )
instance LayoutClass SpiralWithDir a where
pureLayout (SpiralWithDir dir rot scale) sc stack = zip ws rects
where ws = integrate stack
ratios = blend scale . reverse . take (length ws - 1) . mkRatios $ tail fibs
rects = divideRects (zip ratios dirs) sc
dirs = dropWhile (/= dir) $ case rot of
CW -> cycle [East .. North]
CCW -> cycle [North, West, South, East]
handleMessage (SpiralWithDir dir rot scale) = return . fmap resize . fromMessage
where resize Expand = spiralWithDir dir rot $ (21 % 20) * scale
resize Shrink = spiralWithDir dir rot $ (20 % 21) * scale
description _ = "Spiral"
-- This will produce one more rectangle than there are splits details
divideRects :: [(Rational, Direction)] -> Rectangle -> [Rectangle]
divideRects [] r = [r]
divideRects ((r,d):xs) rect = case divideRect r d rect of
(r1, r2) -> r1 : (divideRects xs r2)
-- It's much simpler if we work with all Integers and convert to
-- Rectangle at the end.
data Rect = Rect Integer Integer Integer Integer
fromRect :: Rect -> Rectangle
fromRect (Rect x y w h) = Rectangle (fromIntegral x) (fromIntegral y) (fromIntegral w) (fromIntegral h)
toRect :: Rectangle -> Rect
toRect (Rectangle x y w h) = Rect (fromIntegral x) (fromIntegral y) (fromIntegral w) (fromIntegral h)
divideRect :: Rational -> Direction -> Rectangle -> (Rectangle, Rectangle)
divideRect r d rect = let (r1, r2) = divideRect' r d $ toRect rect in
(fromRect r1, fromRect r2)
divideRect' :: Rational -> Direction -> Rect -> (Rect, Rect)
divideRect' ratio dir (Rect x y w h) =
case dir of
East -> let (w1, w2) = chop ratio w in (Rect x y w1 h, Rect (x + w1) y w2 h)
South -> let (h1, h2) = chop ratio h in (Rect x y w h1, Rect x (y + h1) w h2)
West -> let (w1, w2) = chop (1 - ratio) w in (Rect (x + w1) y w2 h, Rect x y w1 h)
North -> let (h1, h2) = chop (1 - ratio) h in (Rect x (y + h1) w h2, Rect x y w h1)
chop :: Rational -> Integer -> (Integer, Integer)
chop rat n = let f = ((fromIntegral n) * (numerator rat)) `div` (denominator rat) in
(f, n - f)