{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses, DeriveDataTypeable #-}
-----------------------------------------------------------------------------
-- |
-- Module : XMonad.Layout.BinarySpacePartition
-- Copyright : (c) 2013 Ben Weitzman <benweitzman@gmail.com>
-- 2015 Anton Pirogov <anton.pirogov@gmail.com>
-- License : BSD3-style (see LICENSE)
--
-- Maintainer : Ben Weitzman <benweitzman@gmail.com>
-- Stability : unstable
-- Portability : unportable
--
-- Layout where new windows will split the focused window in half, based off of BSPWM
--
-----------------------------------------------------------------------------
module XMonad.Layout.BinarySpacePartition (
-- * Usage
-- $usage
emptyBSP
, Rotate(..)
, Swap(..)
, ResizeDirectional(..)
, TreeRotate(..)
, TreeBalance(..)
, FocusParent(..)
, Direction2D(..)
) where
import XMonad
import qualified XMonad.StackSet as W
import XMonad.Util.Stack hiding (Zipper)
import XMonad.Util.Types
-- for mouse resizing
import XMonad.Layout.WindowArranger (WindowArrangerMsg(SetGeometry))
-- for "focus parent" node border
import XMonad.Util.XUtils
import qualified Data.Map as M
import qualified Data.Set as S
import Data.List ((\\), elemIndex, foldl')
import Data.Maybe (fromMaybe, isNothing, isJust, mapMaybe, catMaybes)
import Control.Applicative
import Control.Monad
import Data.Ratio ((%))
-- $usage
-- You can use this module with the following in your @~\/.xmonad\/xmonad.hs@:
--
-- > import XMonad.Layout.BinarySpacePartition
--
-- Then add the layout, using the default BSP (BinarySpacePartition)
--
-- > myLayout = emptyBSP ||| etc ..
--
-- It may be a good idea to use "XMonad.Actions.Navigation2D" to move between the windows.
--
-- This layout responds to SetGeometry and is compatible with e.g. "XMonad.Actions.MouseResize"
-- or "XMonad.Layout.BorderResize". You should probably try both to decide which is better for you,
-- if you want to be able to resize the splits with the mouse.
--
-- If you don't want to use the mouse, add the following key bindings to resize the splits with the keyboard:
--
-- > , ((modm .|. altMask, xK_l ), sendMessage $ ExpandTowards R)
-- > , ((modm .|. altMask, xK_h ), sendMessage $ ExpandTowards L)
-- > , ((modm .|. altMask, xK_j ), sendMessage $ ExpandTowards D)
-- > , ((modm .|. altMask, xK_k ), sendMessage $ ExpandTowards U)
-- > , ((modm .|. altMask .|. ctrlMask , xK_l ), sendMessage $ ShrinkFrom R)
-- > , ((modm .|. altMask .|. ctrlMask , xK_h ), sendMessage $ ShrinkFrom L)
-- > , ((modm .|. altMask .|. ctrlMask , xK_j ), sendMessage $ ShrinkFrom D)
-- > , ((modm .|. altMask .|. ctrlMask , xK_k ), sendMessage $ ShrinkFrom U)
-- > , ((modm, xK_r ), sendMessage Rotate)
-- > , ((modm, xK_s ), sendMessage Swap)
-- > , ((modm, xK_n ), sendMessage FocusParent)
--
-- Here's an alternative key mapping, this time using additionalKeysP,
-- arrow keys, and slightly different behavior when resizing windows
--
-- > , ("M-M1-<Left>", sendMessage $ ExpandTowards L)
-- > , ("M-M1-<Right>", sendMessage $ ShrinkFrom L)
-- > , ("M-M1-<Up>", sendMessage $ ExpandTowards U)
-- > , ("M-M1-<Down>", sendMessage $ ShrinkFrom U)
-- > , ("M-M1-C-<Left>", sendMessage $ ShrinkFrom R)
-- > , ("M-M1-C-<Right>", sendMessage $ ExpandTowards R)
-- > , ("M-M1-C-<Up>", sendMessage $ ShrinkFrom D)
-- > , ("M-M1-C-<Down>", sendMessage $ ExpandTowards D)
-- > , ("M-s", sendMessage $ BSP.Swap)
-- > , ("M-M1-s", sendMessage $ Rotate) ]
--
-- If you have many windows open and the layout begins to look too hard to manage, you can 'Balance'
-- the layout, so that the current splittings are discarded and windows are tiled freshly in a way that
-- the split depth is minimized. You can combine this with 'Equalize', which does not change your tree,
-- but tunes the split ratios in a way that each window gets the same amount of space:
--
-- > , ((myModMask, xK_a), sendMessage Balance)
-- > , ((myModMask .|. shiftMask, xK_a), sendMessage Equalize)
--
-- |Message for rotating the binary tree around the parent node of the window to the left or right
data TreeRotate = RotateL | RotateR deriving Typeable
instance Message TreeRotate
-- |Message to balance the tree in some way (Balance retiles the windows, Equalize changes ratios)
data TreeBalance = Balance | Equalize deriving Typeable
instance Message TreeBalance
-- |Message for resizing one of the cells in the BSP
data ResizeDirectional = ExpandTowards Direction2D | ShrinkFrom Direction2D | MoveSplit Direction2D deriving Typeable
instance Message ResizeDirectional
-- |Message for rotating a split (horizontal/vertical) in the BSP
data Rotate = Rotate deriving Typeable
instance Message Rotate
-- |Message for swapping the left child of a split with the right child of split
data Swap = Swap deriving Typeable
instance Message Swap
-- |Message to select the parent node instead of the leaf
data FocusParent = FocusParent deriving Typeable
instance Message FocusParent
data Axis = Horizontal | Vertical deriving (Show, Read, Eq)
oppositeDirection :: Direction2D -> Direction2D
oppositeDirection U = D
oppositeDirection D = U
oppositeDirection L = R
oppositeDirection R = L
oppositeAxis :: Axis -> Axis
oppositeAxis Vertical = Horizontal
oppositeAxis Horizontal = Vertical
toAxis :: Direction2D -> Axis
toAxis U = Horizontal
toAxis D = Horizontal
toAxis L = Vertical
toAxis R = Vertical
split :: Axis -> Rational -> Rectangle -> (Rectangle, Rectangle)
split Horizontal r (Rectangle sx sy sw sh) = (r1, r2) where
r1 = Rectangle sx sy sw sh'
r2 = Rectangle sx (sy + fromIntegral sh') sw (sh - sh')
sh' = floor $ fromIntegral sh * r
split Vertical r (Rectangle sx sy sw sh) = (r1, r2) where
r1 = Rectangle sx sy sw' sh
r2 = Rectangle (sx + fromIntegral sw') sy (sw - sw') sh
sw' = floor $ fromIntegral sw * r
data Split = Split { axis :: Axis
, ratio :: Rational
} deriving (Show, Read, Eq)
oppositeSplit :: Split -> Split
oppositeSplit (Split d r) = Split (oppositeAxis d) r
increaseRatio :: Split -> Rational -> Split
increaseRatio (Split d r) delta = Split d (min 0.9 (max 0.1 (r + delta)))
resizeDiff :: Rational
resizeDiff = 0.05
data Tree a = Leaf Int | Node { value :: a
, left :: Tree a
, right :: Tree a
} deriving (Show, Read, Eq)
numLeaves :: Tree a -> Int
numLeaves (Leaf _) = 1
numLeaves (Node _ l r) = numLeaves l + numLeaves r
-- right or left rotation of a (sub)tree, no effect if rotation not possible
rotTree :: Direction2D -> Tree a -> Tree a
rotTree _ (Leaf n) = (Leaf n)
rotTree R n@(Node _ (Leaf _) _) = n
rotTree L n@(Node _ _ (Leaf _)) = n
rotTree R (Node sp (Node sp2 l2 r2) r) = Node sp2 l2 (Node sp r2 r)
rotTree L (Node sp l (Node sp2 l2 r2)) = Node sp2 (Node sp l l2) r2
rotTree _ t = t
data Crumb a = LeftCrumb a (Tree a) | RightCrumb a (Tree a) deriving (Show, Read, Eq)
swapCrumb :: Crumb a -> Crumb a
swapCrumb (LeftCrumb s t) = RightCrumb s t
swapCrumb (RightCrumb s t) = LeftCrumb s t
parentVal :: Crumb a -> a
parentVal (LeftCrumb s _) = s
parentVal (RightCrumb s _) = s
modifyParentVal :: (a -> a) -> Crumb a -> Crumb a
modifyParentVal f (LeftCrumb s t) = LeftCrumb (f s) t
modifyParentVal f (RightCrumb s t) = RightCrumb (f s) t
type Zipper a = (Tree a, [Crumb a])
toZipper :: Tree a -> Zipper a
toZipper t = (t, [])
goLeft :: Zipper a -> Maybe (Zipper a)
goLeft (Leaf _, _) = Nothing
goLeft (Node x l r, bs) = Just (l, LeftCrumb x r:bs)
goRight :: Zipper a -> Maybe (Zipper a)
goRight (Leaf _, _) = Nothing
goRight (Node x l r, bs) = Just (r, RightCrumb x l:bs)
goUp :: Zipper a -> Maybe (Zipper a)
goUp (_, []) = Nothing
goUp (t, LeftCrumb x r:cs) = Just (Node x t r, cs)
goUp (t, RightCrumb x l:cs) = Just (Node x l t, cs)
goSibling :: Zipper a -> Maybe (Zipper a)
goSibling (_, []) = Nothing
goSibling z@(_, LeftCrumb _ _:_) = Just z >>= goUp >>= goRight
goSibling z@(_, RightCrumb _ _:_) = Just z >>= goUp >>= goLeft
top :: Zipper a -> Zipper a
top z = case goUp z of
Nothing -> z
Just z' -> top z'
toTree :: Zipper a -> Tree a
toTree = fst . top
goToNthLeaf :: Int -> Zipper a -> Maybe (Zipper a)
goToNthLeaf _ z@(Leaf _, _) = Just z
goToNthLeaf n z@(t, _) =
if numLeaves (left t) > n
then do z' <- goLeft z
goToNthLeaf n z'
else do z' <- goRight z
goToNthLeaf (n - (numLeaves . left $ t)) z'
goToFocusedLocation :: (Int,Int,[Window]) -> Zipper a -> Maybe (Zipper a)
goToFocusedLocation (l,n,_) z = goToNthLeaf l z >>= goUpN n
where goUpN 0 b = return b
goUpN m b = goUp b >>= goUpN (m-1)
splitCurrentLeaf :: Zipper Split -> Maybe (Zipper Split)
splitCurrentLeaf (Leaf _, []) = Just (Node (Split Vertical 0.5) (Leaf 0) (Leaf 0), [])
splitCurrentLeaf (Leaf _, crumb:cs) = Just (Node (Split (oppositeAxis . axis . parentVal $ crumb) 0.5) (Leaf 0) (Leaf 0), crumb:cs)
splitCurrentLeaf _ = Nothing
removeCurrentLeaf :: Zipper a -> Maybe (Zipper a)
removeCurrentLeaf (Leaf _, []) = Nothing
removeCurrentLeaf (Leaf _, LeftCrumb _ r:cs) = Just (r, cs)
removeCurrentLeaf (Leaf _, RightCrumb _ l:cs) = Just (l, cs)
removeCurrentLeaf _ = Nothing
rotateCurrent :: Zipper Split -> Maybe (Zipper Split)
rotateCurrent l@(Leaf _, []) = Just l
rotateCurrent (n, c:cs) = Just (n, modifyParentVal oppositeSplit c:cs)
rotateCurrent _ = Nothing
swapCurrent :: Zipper a -> Maybe (Zipper a)
swapCurrent l@(Leaf _, []) = Just l
swapCurrent (n, c:cs) = Just (n, swapCrumb c:cs)
swapCurrent _ = Nothing
isAllTheWay :: Direction2D -> Zipper Split -> Bool
isAllTheWay _ (_, []) = True
isAllTheWay R (_, LeftCrumb s _:_)
| axis s == Vertical = False
isAllTheWay L (_, RightCrumb s _:_)
| axis s == Vertical = False
isAllTheWay D (_, LeftCrumb s _:_)
| axis s == Horizontal = False
isAllTheWay U (_, RightCrumb s _:_)
| axis s == Horizontal = False
isAllTheWay dir z = fromMaybe False $ goUp z >>= Just . isAllTheWay dir
expandTreeTowards :: Direction2D -> Zipper Split -> Maybe (Zipper Split)
expandTreeTowards _ z@(_, []) = Just z
expandTreeTowards dir z
| isAllTheWay dir z = shrinkTreeFrom (oppositeDirection dir) z
expandTreeTowards R (t, LeftCrumb s r:cs)
| axis s == Vertical = Just (t, LeftCrumb (increaseRatio s resizeDiff) r:cs)
expandTreeTowards L (t, RightCrumb s l:cs)
| axis s == Vertical = Just (t, RightCrumb (increaseRatio s (-resizeDiff)) l:cs)
expandTreeTowards D (t, LeftCrumb s r:cs)
| axis s == Horizontal = Just (t, LeftCrumb (increaseRatio s resizeDiff) r:cs)
expandTreeTowards U (t, RightCrumb s l:cs)
| axis s == Horizontal = Just (t, RightCrumb (increaseRatio s (-resizeDiff)) l:cs)
expandTreeTowards dir z = goUp z >>= expandTreeTowards dir
shrinkTreeFrom :: Direction2D -> Zipper Split -> Maybe (Zipper Split)
shrinkTreeFrom _ z@(_, []) = Just z
shrinkTreeFrom R z@(_, LeftCrumb s _:_)
| axis s == Vertical = Just z >>= goSibling >>= expandTreeTowards L
shrinkTreeFrom L z@(_, RightCrumb s _:_)
| axis s == Vertical = Just z >>= goSibling >>= expandTreeTowards R
shrinkTreeFrom D z@(_, LeftCrumb s _:_)
| axis s == Horizontal = Just z >>= goSibling >>= expandTreeTowards U
shrinkTreeFrom U z@(_, RightCrumb s _:_)
| axis s == Horizontal = Just z >>= goSibling >>= expandTreeTowards D
shrinkTreeFrom dir z = goUp z >>= shrinkTreeFrom dir
-- Direction2D refers to which direction the divider should move.
autoSizeTree :: Direction2D -> Zipper Split -> Maybe (Zipper Split)
autoSizeTree _ z@(_, []) = Just z
autoSizeTree d z =
Just z >>= getSplit (toAxis d) >>= resizeTree d
-- resizing once found the correct split. YOU MUST FIND THE RIGHT SPLIT FIRST.
resizeTree :: Direction2D -> Zipper Split -> Maybe (Zipper Split)
resizeTree _ z@(_, []) = Just z
resizeTree R z@(_, LeftCrumb _ _:_) =
Just z >>= expandTreeTowards R
resizeTree L z@(_, LeftCrumb _ _:_) =
Just z >>= shrinkTreeFrom R
resizeTree U z@(_, LeftCrumb _ _:_) =
Just z >>= shrinkTreeFrom D
resizeTree D z@(_, LeftCrumb _ _:_) =
Just z >>= expandTreeTowards D
resizeTree R z@(_, RightCrumb _ _:_) =
Just z >>= shrinkTreeFrom L
resizeTree L z@(_, RightCrumb _ _:_) =
Just z >>= expandTreeTowards L
resizeTree U z@(_, RightCrumb _ _:_) =
Just z >>= expandTreeTowards U
resizeTree D z@(_, RightCrumb _ _:_) =
Just z >>= shrinkTreeFrom U
getSplit :: Axis -> Zipper Split -> Maybe (Zipper Split)
getSplit _ (_, []) = Nothing
getSplit d z =
do let fs = findSplit d z
if isNothing fs
then findClosest d z
else fs
findClosest :: Axis -> Zipper Split -> Maybe (Zipper Split)
findClosest _ z@(_, []) = Just z
findClosest d z@(_, LeftCrumb s _:_)
| axis s == d = Just z
findClosest d z@(_, RightCrumb s _:_)
| axis s == d = Just z
findClosest d z = goUp z >>= findClosest d
findSplit :: Axis -> Zipper Split -> Maybe (Zipper Split)
findSplit _ (_, []) = Nothing
findSplit d z@(_, LeftCrumb s _:_)
| axis s == d = Just z
findSplit d z = goUp z >>= findSplit d
resizeSplit :: Direction2D -> (Rational,Rational) -> Zipper Split -> Maybe (Zipper Split)
resizeSplit _ _ z@(_, []) = Just z
resizeSplit dir (xsc,ysc) z = case goToBorder dir z of
Nothing -> Just z
Just (t, crumb) -> Just $ case dir of
R -> (t{value=sp{ratio=scaleRatio (ratio sp) xsc}}, crumb)
D -> (t{value=sp{ratio=scaleRatio (ratio sp) ysc}}, crumb)
L -> (t{value=sp{ratio=1-scaleRatio (1-ratio sp) xsc}}, crumb)
U -> (t{value=sp{ratio=1-scaleRatio (1-ratio sp) ysc}}, crumb)
where sp = value t
scaleRatio r fac = min 0.9 $ max 0.1 $ r*fac
-- starting from a leaf, go to node representing a border of the according window
goToBorder :: Direction2D -> Zipper Split -> Maybe (Zipper Split)
goToBorder L z@(_, RightCrumb (Split Vertical _) _:_) = goUp z
goToBorder L z = goUp z >>= goToBorder L
goToBorder R z@(_, LeftCrumb (Split Vertical _) _:_) = goUp z
goToBorder R z = goUp z >>= goToBorder R
goToBorder U z@(_, RightCrumb (Split Horizontal _) _:_) = goUp z
goToBorder U z = goUp z >>= goToBorder U
goToBorder D z@(_, LeftCrumb (Split Horizontal _) _:_) = goUp z
goToBorder D z = goUp z >>= goToBorder D
data BinarySpacePartition a = BinarySpacePartition { getOldRects :: [(Window,Rectangle)]
, getFocusedNode :: (Int,Int,[Window]) -- leaf, steps up,deco
, getTree :: Maybe (Tree Split) } deriving (Show, Read)
-- | an empty BinarySpacePartition to use as a default for adding windows to.
emptyBSP :: BinarySpacePartition a
emptyBSP = BinarySpacePartition [] ((-1),0,[]) Nothing
makeBSP :: Tree Split -> BinarySpacePartition a
makeBSP = BinarySpacePartition [] ((-1),0,[]) . Just
makeZipper :: BinarySpacePartition a -> Maybe (Zipper Split)
makeZipper (BinarySpacePartition _ _ Nothing) = Nothing
makeZipper (BinarySpacePartition _ _ (Just t)) = Just . toZipper $ t
size :: BinarySpacePartition a -> Int
size = maybe 0 numLeaves . getTree
zipperToBinarySpacePartition :: Maybe (Zipper Split) -> BinarySpacePartition b
zipperToBinarySpacePartition Nothing = emptyBSP
zipperToBinarySpacePartition (Just z) = BinarySpacePartition [] ((-1),0,[]) . Just . toTree . top $ z
rectangles :: BinarySpacePartition a -> Rectangle -> [Rectangle]
rectangles (BinarySpacePartition _ _ Nothing) _ = []
rectangles (BinarySpacePartition _ _ (Just (Leaf _))) rootRect = [rootRect]
rectangles (BinarySpacePartition _ _ (Just node)) rootRect =
rectangles (makeBSP . left $ node) leftBox ++
rectangles (makeBSP . right $ node) rightBox
where (leftBox, rightBox) = split (axis info) (ratio info) rootRect
info = value node
getNodeRect :: BinarySpacePartition a -> Rectangle -> (Int,Int) -> Rectangle
getNodeRect b r (l,n) = fromMaybe (Rectangle 0 0 1 1)
$ (makeZipper b >>= goToFocusedLocation (l,n,[]) >>= getRect [])
where getRect ls (_, []) = Just $ foldl (\r' (s,f) -> f $ split' s r') r ls
getRect ls z@(_, LeftCrumb s _:_) = goUp z >>= getRect ((s,fst):ls)
getRect ls z@(_, RightCrumb s _:_) = goUp z >>= getRect ((s,snd):ls)
split' s = split (axis s) (ratio s)
doToNth :: (Zipper Split -> Maybe (Zipper Split)) -> BinarySpacePartition a -> Int -> BinarySpacePartition a
doToNth f b _ = zipperToBinarySpacePartition $ makeZipper b >>= goToFocusedLocation (getFocusedNode b) >>= f
splitNth :: BinarySpacePartition a -> Int -> BinarySpacePartition a
splitNth (BinarySpacePartition _ _ Nothing) _ = makeBSP (Leaf 0)
splitNth b n = doToNth splitCurrentLeaf b n
removeNth :: BinarySpacePartition a -> Int -> BinarySpacePartition a
removeNth (BinarySpacePartition _ _ Nothing) _ = emptyBSP
removeNth (BinarySpacePartition _ _ (Just (Leaf _))) _ = emptyBSP
removeNth b n = doToNth removeCurrentLeaf b n
rotateNth :: BinarySpacePartition a -> Int -> BinarySpacePartition a
rotateNth (BinarySpacePartition _ _ Nothing) _ = emptyBSP
rotateNth b@(BinarySpacePartition _ _ (Just (Leaf _))) _ = b
rotateNth b n = doToNth rotateCurrent b n
swapNth :: BinarySpacePartition a -> Int -> BinarySpacePartition a
swapNth (BinarySpacePartition _ _ Nothing) _ = emptyBSP
swapNth b@(BinarySpacePartition _ _ (Just (Leaf _))) _ = b
swapNth b n = doToNth swapCurrent b n
growNthTowards :: Direction2D -> BinarySpacePartition a -> Int -> BinarySpacePartition a
growNthTowards _ (BinarySpacePartition _ _ Nothing) _ = emptyBSP
growNthTowards _ b@(BinarySpacePartition _ _ (Just (Leaf _))) _ = b
growNthTowards dir b n = doToNth (expandTreeTowards dir) b n
shrinkNthFrom :: Direction2D -> BinarySpacePartition a -> Int -> BinarySpacePartition a
shrinkNthFrom _ (BinarySpacePartition _ _ Nothing) _ = emptyBSP
shrinkNthFrom _ b@(BinarySpacePartition _ _ (Just (Leaf _))) _ = b
shrinkNthFrom dir b n = doToNth (shrinkTreeFrom dir) b n
autoSizeNth :: Direction2D -> BinarySpacePartition a -> Int -> BinarySpacePartition a
autoSizeNth _ (BinarySpacePartition _ _ Nothing) _ = emptyBSP
autoSizeNth _ b@(BinarySpacePartition _ _ (Just (Leaf _))) _ = b
autoSizeNth dir b n = doToNth (autoSizeTree dir) b n
resizeSplitNth :: Direction2D -> (Rational,Rational) -> BinarySpacePartition a -> Int -> BinarySpacePartition a
resizeSplitNth _ _ (BinarySpacePartition _ _ Nothing) _ = emptyBSP
resizeSplitNth _ _ b@(BinarySpacePartition _ _ (Just (Leaf _))) _ = b
resizeSplitNth dir sc b n = doToNth (resizeSplit dir sc) b n
-- rotate tree left or right around parent of nth leaf
rotateTreeNth :: Direction2D -> BinarySpacePartition a -> Int -> BinarySpacePartition a
rotateTreeNth _ (BinarySpacePartition _ _ Nothing) _ = emptyBSP
rotateTreeNth U b _ = b
rotateTreeNth D b _ = b
rotateTreeNth dir b@(BinarySpacePartition _ _ (Just _)) n =
doToNth (\t -> case goUp t of
Nothing -> Just t
Just (t', c) -> Just (rotTree dir t', c)) b n
-- set the split ratios so that all windows have the same size, without changing tree itself
equalizeTree :: BinarySpacePartition a -> BinarySpacePartition a
equalizeTree (BinarySpacePartition _ _ Nothing) = emptyBSP
equalizeTree (BinarySpacePartition olr foc (Just t)) = BinarySpacePartition olr foc $ Just $ eql t
where eql (Leaf n) = Leaf n
eql n@(Node s l r) = Node s{ratio=fromIntegral (numLeaves l) % fromIntegral (numLeaves n)}
(eql l) (eql r)
-- generate a symmetrical balanced tree for n leaves
balancedTree :: Int -> BinarySpacePartition a
balancedTree n = numerateLeaves $ BinarySpacePartition [] ((-1),0,[]) $ Just $ balanced n
where balanced 1 = Leaf 0
balanced 2 = Node (Split Horizontal 0.5) (Leaf 0) (Leaf 0)
balanced m = Node (Split Horizontal 0.5) (balanced (m`div`2)) (balanced (m-m`div`2))
-- attempt to rotate splits optimally in order choose more quad-like rects
optimizeOrientation :: Rectangle -> BinarySpacePartition a -> BinarySpacePartition a
optimizeOrientation _ (BinarySpacePartition _ _ Nothing) = emptyBSP
optimizeOrientation rct (BinarySpacePartition olr foc (Just t)) = BinarySpacePartition olr foc $ Just $ opt t rct
where opt (Leaf v) _ = (Leaf v)
opt (Node sp l r) rect = Node sp' (opt l lrect) (opt r rrect)
where (Rectangle _ _ w1 h1,Rectangle _ _ w2 h2) = split (axis sp) (ratio sp) rect
(Rectangle _ _ w3 h3,Rectangle _ _ w4 h4) = split (axis $ oppositeSplit sp) (ratio sp) rect
f w h = if w > h then w'/h' else h'/w' where (w',h') = (fromIntegral w :: Double, fromIntegral h :: Double)
wratio = min (f w1 h1) (f w2 h2)
wratio' = min (f w3 h3) (f w4 h4)
sp' = if wratio<wratio' then sp else oppositeSplit sp
(lrect, rrect) = split (axis sp') (ratio sp') rect
-- traverse and collect all leave numbers, left to right
flattenLeaves :: BinarySpacePartition a -> [Int]
flattenLeaves (BinarySpacePartition _ _ Nothing) = []
flattenLeaves (BinarySpacePartition _ _ (Just t)) = flatten t
where flatten (Leaf n) = [n]
flatten (Node _ l r) = flatten l++flatten r
-- we do this before an action to look afterwards which leaves moved where
numerateLeaves :: BinarySpacePartition a -> BinarySpacePartition a
numerateLeaves b@(BinarySpacePartition _ _ Nothing) = b
numerateLeaves (BinarySpacePartition olr foc (Just t)) = BinarySpacePartition olr foc . Just . snd $ numerate 0 t
where numerate n (Leaf _) = (n+1, Leaf n)
numerate n (Node s l r) = (n'', Node s nl nr)
where (n', nl) = numerate n l
(n'', nr) = numerate n' r
-- returns index of focused window or 0 for empty stack
index :: W.Stack a -> Int
index s = case toIndex (Just s) of
(_, Nothing) -> 0
(_, Just int) -> int
--move windows to new positions according to tree transformations, keeping focus on originally focused window
--CAREFUL here! introduce a bug here and have fun debugging as your windows start to disappear or explode
adjustStack :: Maybe (W.Stack Window) --original stack
-> Maybe (W.Stack Window) --stack without floating windows
-> [Window] --just floating windows of this WS
-> Maybe (BinarySpacePartition Window) -- Tree with numbered leaves telling what to move where
-> Maybe (W.Stack Window) --resulting stack
adjustStack orig Nothing _ _ = orig --no new stack -> no changes
adjustStack orig _ _ Nothing = orig --empty tree -> no changes
adjustStack orig s fw (Just b) =
if length ls<length ws then orig --less leaves than non-floating windows -> tree incomplete, no changes
else fromIndex ws' fid'
where ws' = (mapMaybe ((flip M.lookup) wsmap) ls)++fw
fid' = fromMaybe 0 $ elemIndex focused ws'
wsmap = M.fromList $ zip [0..] ws -- map: old index in list -> window
ls = flattenLeaves b -- get new index ordering from tree
(ws,fid) = toIndex s
focused = ws !! (fromMaybe 0 $ fid)
--replace the window stack of the managed workspace with our modified stack
replaceStack :: Maybe (W.Stack Window) -> X ()
replaceStack s = do
st <- get
let wset = windowset st
cur = W.current wset
wsp = W.workspace cur
put st{windowset=wset{W.current=cur{W.workspace=wsp{W.stack=s}}}}
replaceFloating :: M.Map Window W.RationalRect -> X ()
replaceFloating wsm = do
st <- get
let wset = windowset st
put st{windowset=wset{W.floating=wsm}}
-- some helpers to filter windows
--
getFloating :: X [Window]
getFloating = (M.keys . W.floating) <$> gets windowset -- all floating windows
getStackSet :: X (Maybe (W.Stack Window))
getStackSet = (W.stack . W.workspace . W.current) <$> gets windowset -- windows on this WS (with floating)
withoutFloating :: [Window] -> Maybe (W.Stack Window) -> Maybe (W.Stack Window)
withoutFloating fs = maybe Nothing (unfloat fs)
getScreenRect :: X Rectangle
getScreenRect = (screenRect . W.screenDetail . W.current) <$> gets windowset
-- ignore messages if current focus is on floating window, otherwise return stack without floating
unfloat :: [Window] -> W.Stack Window -> Maybe (W.Stack Window)
unfloat fs s = if W.focus s `elem` fs
then Nothing
else Just $ s{W.up = W.up s \\ fs, W.down = W.down s \\ fs}
instance LayoutClass BinarySpacePartition Window where
doLayout b r s = do
let b' = layout b
b'' <- if size b /= size b' then clearBorder b' else updateBorder r b'
-- when (getFocusedNode b/= getFocusedNode b'') $ debug $ show $ getFocusedNode b''
let rs = rectangles b'' r
wrs = zip ws rs
return (wrs, Just b''{getOldRects=wrs,getFocusedNode=getFocusedNode b''})
where
ws = W.integrate s
l = length ws
n = index s
layout bsp
| l == count = bsp
| l > count = layout $ splitNth bsp n
| otherwise = layout $ removeNth bsp n
where count = size bsp
handleMessage b_orig m
| Just FocusParent <- fromMessage m = focusParent b
| Just msg@(SetGeometry _) <- fromMessage m = handleResize b msg >>= return . updateNodeFocus
| otherwise = do
ws <- getStackSet
fs <- getFloating
r <- getScreenRect
let lws = withoutFloating fs ws -- tiled windows on WS
lfs = (maybe [] W.integrate ws) \\ (maybe [] W.integrate lws) -- untiled windows on WS
b' = lws >>= handleMesg r -- transform tree (concerns only tiled windows)
ws' = adjustStack ws lws lfs b' -- apply transformation to window stack, reintegrate floating wins
replaceStack ws'
return $ updateNodeFocus b'
where handleMesg r s = msum [fmap (`rotate` s) (fromMessage m)
,fmap (`resize` s) (fromMessage m)
,fmap (`swap` s) (fromMessage m)
,fmap (`rotateTr` s) (fromMessage m)
,fmap (balanceTr r) (fromMessage m)
]
updateNodeFocus = maybe Nothing (\bsp -> Just $ bsp{getFocusedNode=clr $ getFocusedNode b_orig})
where clr (_,_,ws) = ((-1),0,ws)
b = numerateLeaves b_orig
rotate Rotate s = rotateNth b $ index s
swap Swap s = swapNth b $ index s
resize (ExpandTowards dir) s = growNthTowards dir b $ index s
resize (ShrinkFrom dir) s = shrinkNthFrom dir b $ index s
resize (MoveSplit dir) s = autoSizeNth dir b $ index s
rotateTr RotateL s = rotateTreeNth L b $ index s
rotateTr RotateR s = rotateTreeNth R b $ index s
balanceTr _ Equalize = equalizeTree b
balanceTr r Balance = optimizeOrientation r $ balancedTree (size b)
description _ = "BSP"
-- React to SetGeometry message to work with BorderResize/MouseResize
handleResize :: BinarySpacePartition Window -> WindowArrangerMsg -> X (Maybe (BinarySpacePartition Window))
handleResize b (SetGeometry newrect@(Rectangle _ _ w h)) = do
ws <- getStackSet
fs <- getFloating
case W.focus <$> ws of
Nothing -> return Nothing
Just win -> do
(_,_,_,_,_,mx,my,_) <- withDisplay (\d -> (io $ queryPointer d win))
let oldrect@(Rectangle _ _ ow oh) = fromMaybe (Rectangle 0 0 0 0) $ lookup win $ getOldRects b
let (xsc,ysc) = (fi w % fi ow, fi h % fi oh)
(xsc',ysc') = (rough xsc, rough ysc)
dirs = changedDirs oldrect newrect (fi mx,fi my)
n = elemIndex win $ maybe [] W.integrate $ withoutFloating fs ws
-- unless (isNothing dir) $ debug $
-- show (fi x-fi ox,fi y-fi oy) ++ show (fi w-fi ow,fi h-fi oh)
-- ++ show dir ++ " " ++ show win ++ " " ++ show (mx,my)
return $ case n of
Just n' -> Just $ foldl' (\b' d -> resizeSplitNth d (xsc',ysc') b' n') b dirs
Nothing -> Nothing --focused window is floating -> ignore
where rough v = min 1.5 $ max 0.75 v -- extreme scale factors are forbidden
handleResize _ _ = return Nothing
-- find out which borders have been pulled. We need the old and new rects and the mouse coordinates
changedDirs :: Rectangle -> Rectangle -> (Int,Int) -> [Direction2D]
changedDirs (Rectangle _ _ ow oh) (Rectangle _ _ w h) (mx,my) = catMaybes [lr, ud]
where lr = if ow==w then Nothing
else Just (if (fi mx :: Double) > (fi ow :: Double)/2 then R else L)
ud = if oh==h then Nothing
else Just (if (fi my :: Double) > (fi oh :: Double)/2 then D else U)
-- move focus to next higher parent node of current focused leaf if possible, cyclic
focusParent :: BinarySpacePartition a -> X (Maybe (BinarySpacePartition a))
focusParent b = do
foc <- maybe 0 index <$> (withoutFloating <$> getFloating <*> getStackSet)
let (l,n,d) = getFocusedNode b
return . Just $ if foc/= l then b{getFocusedNode=(foc,1,d)}
else b{getFocusedNode=upFocus (l,n,d)}
-- debug $ "Focus Parent: "++(maybe "" (show.getFocusedNode) ret)
where upFocus (l,n,d)
| canFocus (l,n+1,d) = (l,n+1,d)
| otherwise = (l,0,d)
canFocus (l,n,d) = isJust $ makeZipper b >>= goToFocusedLocation (l,n+1,d)
-- "focus parent" border helpers
updateBorder :: Rectangle -> BinarySpacePartition a -> X (BinarySpacePartition a)
updateBorder r b = do
foc <- maybe 0 index <$> (withoutFloating <$> getFloating <*> getStackSet)
let (l,n,ws) = getFocusedNode b
removeBorder ws
if n==0 || foc/=l then return b{getFocusedNode=(foc,0,[])}
else createBorder (getNodeRect b r (l,n)) Nothing >>= (\ws' -> return b{getFocusedNode=(l,n,ws')})
clearBorder :: BinarySpacePartition a -> X (BinarySpacePartition a)
clearBorder b = do
let (_,_,ws) = getFocusedNode b
removeBorder ws
return b{getFocusedNode=((-1),0,[])}
-- create a window for each border line, show, add into stack and set floating
createBorder :: Rectangle -> Maybe String -> X [Window]
createBorder (Rectangle wx wy ww wh) c = do
bw <- asks (borderWidth.config)
bc <- case c of
Nothing -> asks (focusedBorderColor.config)
Just s -> return s
let rects = [ Rectangle wx wy ww (fi bw)
, Rectangle wx wy (fi bw) wh
, Rectangle wx (wy+fi wh-fi bw) ww (fi bw)
, Rectangle (wx+fi ww-fi bw) wy (fi bw) wh
]
ws <- mapM (\r -> createNewWindow r Nothing bc False) rects
showWindows ws
maybe Nothing (\s -> Just s{W.down=W.down s ++ ws}) <$> getStackSet >>= replaceStack
M.union (M.fromList $ zip ws $ map toRR rects) . W.floating . windowset <$> get >>= replaceFloating
modify (\s -> s{mapped=mapped s `S.union` S.fromList ws})
-- show <$> mapM isClient ws >>= debug
return ws
where toRR (Rectangle x y w h) = W.RationalRect (fi x) (fi y) (fi w) (fi h)
-- remove border line windows from stack + floating, kill
removeBorder :: [Window] -> X ()
removeBorder ws = do
modify (\s -> s{mapped = mapped s `S.difference` S.fromList ws})
flip (foldl (flip M.delete)) ws . W.floating . windowset <$> get >>= replaceFloating
maybe Nothing (\s -> Just s{W.down=W.down s \\ ws}) <$> getStackSet >>= replaceStack
deleteWindows ws