blob: 76faf6e92718717f7780ef1d001cf27888c55d13 (
plain) (
tree)
|
|
-----------------------------------------------------------------------------
-- |
-- Module : XMonadContrib.ThreeColumns
-- Copyright : (c) Kai Grossjohann <kai@emptydomain.de>
-- License : BSD3-style (see LICENSE)
--
-- Maintainer : ?
-- Stability : unstable
-- Portability : unportable
--
-- A layout similar to tall but with three columns.
--
-----------------------------------------------------------------------------
module XMonadContrib.ThreeColumns (
-- * Usage
-- $usage
threeCol
) where
import XMonad
import qualified StackSet as W
import Operations ( Resize(..), IncMasterN(..), splitVertically, splitHorizontallyBy )
import Data.Ratio
--import Control.Monad.State
import Control.Monad.Reader
import Graphics.X11.Xlib
-- $usage
--
-- You can use this module with the following in your Config.hs file:
--
-- > import XMonadContrib.ThreeColumns
--
-- and add, to the list of layouts:
--
-- > threeCol nmaster delta ratio
-- %import XMonadContrib.ThreeColumns
-- %layout , threeCol nmaster delta ratio
threeCol :: Int -> Rational -> Rational -> Layout a
threeCol nmaster delta frac =
Layout { doLayout = \r -> return . (\x->(x,Nothing)) .
ap zip (tile3 frac r nmaster . length) . W.integrate
, modifyLayout = \m -> return $ msum [fmap resize (fromMessage m)
,fmap incmastern (fromMessage m)] }
where resize Shrink = threeCol nmaster delta (max 0 $ frac-delta)
resize Expand = threeCol nmaster delta (min 1 $ frac+delta)
incmastern (IncMasterN d) = threeCol (max 0 (nmaster+d)) delta frac
-- | tile3. Compute window positions using 3 panes
tile3 :: Rational -> Rectangle -> Int -> Int -> [Rectangle]
tile3 f r nmaster n
| n <= nmaster || nmaster == 0 = splitVertically n r
| n <= nmaster+1 = splitVertically nmaster s1 ++ splitVertically (n-nmaster) s2
| otherwise = splitVertically nmaster r1 ++ splitVertically nmid r2 ++ splitVertically nright r3
where (r1, r2, r3) = split3HorizontallyBy f r
(s1, s2) = splitHorizontallyBy f r
nslave = (n - nmaster)
nmid = ceiling (nslave % 2)
nright = (n - nmaster - nmid)
split3HorizontallyBy :: Rational -> Rectangle -> (Rectangle, Rectangle, Rectangle)
split3HorizontallyBy f (Rectangle sx sy sw sh) =
( Rectangle sx sy leftw sh
, Rectangle (sx + fromIntegral leftw) sy midw sh
, Rectangle (sx + fromIntegral leftw + fromIntegral midw) sy rightw sh )
where leftw = ceiling $ fromIntegral sw * (2/3) * f
midw = ceiling ( (sw - leftw) % 2 )
rightw = sw - leftw - midw
|