blob: 29116758cf9568d2f071c1cdc2759c94688c46c1 (
plain) (
tree)
|
|
{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses, TypeSynonymInstances #-}
-----------------------------------------------------------------------------
-- |
-- Module : XMonadContrib.Circle
-- Copyright : (c) Peter De Wachter
-- License : BSD-style (see LICENSE)
--
-- Maintainer : Peter De Wachter <pdewacht@gmail.com>
-- Stability : unstable
-- Portability : unportable
--
-- Circle is an elliptical, overlapping layout, by Peter De Wachter
--
-----------------------------------------------------------------------------
module XMonadContrib.Circle (
-- * Usage
-- $usage
Circle (..)
) where -- actually it's an ellipse
import Data.List
import Graphics.X11.Xlib
import XMonad
import StackSet (integrate, peek)
-- $usage
-- You can use this module with the following in your Config.hs file:
--
-- > import XMonadContrib.Circle
-- > defaultLayouts = [ Layout Circle ]
-- %import XMonadContrib.Circle
data Circle a = Circle deriving ( Read, Show )
instance LayoutClass Circle Window where
doLayout Circle r s = do layout <- raiseFocus $ circleLayout r $ integrate s
return (layout, Nothing)
circleLayout :: Rectangle -> [a] -> [(a, Rectangle)]
circleLayout _ [] = []
circleLayout r (w:ws) = master : rest
where master = (w, center r)
rest = zip ws $ map (satellite r) [0, pi * 2 / fromIntegral (length ws) ..]
raiseFocus :: [(Window, Rectangle)] -> X [(Window, Rectangle)]
raiseFocus xs = do focused <- withWindowSet (return . peek)
return $ case find ((== focused) . Just . fst) xs of
Just x -> x : delete x xs
Nothing -> xs
center :: Rectangle -> Rectangle
center (Rectangle sx sy sw sh) = Rectangle x y w h
where s = sqrt 2 :: Double
w = round (fromIntegral sw / s)
h = round (fromIntegral sh / s)
x = sx + fromIntegral (sw - w) `div` 2
y = sy + fromIntegral (sh - h) `div` 2
satellite :: Rectangle -> Double -> Rectangle
satellite (Rectangle sx sy sw sh) a = Rectangle (sx + round (rx + rx * cos a))
(sy + round (ry + ry * sin a))
w h
where rx = fromIntegral (sw - w) / 2
ry = fromIntegral (sh - h) / 2
w = sw * 10 `div` 25
h = sh * 10 `div` 25
|