aboutsummaryrefslogtreecommitdiffstats
path: root/XMonad/Layout/BinarySpacePartition.hs
blob: 6c6e674a3276a7f0cb24a63e9d6a4ab2afd54169 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses, DeriveDataTypeable #-}
-----------------------------------------------------------------------------
-- |
-- Module      :  XMonad.Layout.BinarySpacePartition
-- Copyright   :  (c) 2013 Ben Weitzman    <benweitzman@gmail.com>
--                    2015 Anton Pirogov   <anton.pirogov@gmail.com>
-- License     :  BSD3-style (see LICENSE)
--
-- Maintainer  :  Ben Weitzman <benweitzman@gmail.com>
-- Stability   :  unstable
-- Portability :  unportable
--
-- Layout where new windows will split the focused window in half, based off of BSPWM
--
-----------------------------------------------------------------------------

module XMonad.Layout.BinarySpacePartition (
  -- * Usage
  -- $usage
    emptyBSP
  , Rotate(..)
  , Swap(..)
  , ResizeDirectional(..)
  , TreeRotate(..)
  , TreeBalance(..)
  , FocusParent(..)
  , Direction2D(..)
  ) where

import XMonad
import qualified XMonad.StackSet as W
import XMonad.Util.Stack hiding (Zipper)
import XMonad.Util.Types

-- for mouse resizing
import XMonad.Layout.WindowArranger (WindowArrangerMsg(SetGeometry))
-- for "focus parent" node border
import XMonad.Util.XUtils

import qualified Data.Map as M
import qualified Data.Set as S
import Data.List ((\\), elemIndex, foldl')
import Data.Maybe (fromMaybe, isNothing, isJust, mapMaybe, catMaybes)
import Control.Applicative
import Control.Monad
import Data.Ratio ((%))

-- $usage
-- You can use this module with the following in your @~\/.xmonad\/xmonad.hs@:
--
-- > import XMonad.Layout.BinarySpacePartition
--
-- Then add the layout, using the default BSP (BinarySpacePartition)
--
-- > myLayout = emptyBSP ||| etc ..
--
-- It may be a good idea to use "XMonad.Actions.Navigation2D" to move between the windows.
--
-- This layout responds to SetGeometry and is compatible with e.g. "XMonad.Actions.MouseResize"
-- or "XMonad.Layout.BorderResize". You should probably try both to decide which is better for you,
-- if you want to be able to resize the splits with the mouse.
--
-- If you don't want to use the mouse, add the following key bindings to resize the splits with the keyboard:
--
-- > , ((modm .|. altMask,               xK_l     ), sendMessage $ ExpandTowards R)
-- > , ((modm .|. altMask,               xK_h     ), sendMessage $ ExpandTowards L)
-- > , ((modm .|. altMask,               xK_j     ), sendMessage $ ExpandTowards D)
-- > , ((modm .|. altMask,               xK_k     ), sendMessage $ ExpandTowards U)
-- > , ((modm .|. altMask .|. ctrlMask , xK_l     ), sendMessage $ ShrinkFrom R)
-- > , ((modm .|. altMask .|. ctrlMask , xK_h     ), sendMessage $ ShrinkFrom L)
-- > , ((modm .|. altMask .|. ctrlMask , xK_j     ), sendMessage $ ShrinkFrom D)
-- > , ((modm .|. altMask .|. ctrlMask , xK_k     ), sendMessage $ ShrinkFrom U)
-- > , ((modm,                           xK_r     ), sendMessage Rotate)
-- > , ((modm,                           xK_s     ), sendMessage Swap)
-- > , ((modm,                           xK_n     ), sendMessage FocusParent)
--
-- Here's an alternative key mapping, this time using additionalKeysP,
-- arrow keys, and slightly different behavior when resizing windows
--
-- > , ("M-M1-<Left>",    sendMessage $ ExpandTowards L)
-- > , ("M-M1-<Right>",   sendMessage $ ShrinkFrom L)
-- > , ("M-M1-<Up>",      sendMessage $ ExpandTowards U)
-- > , ("M-M1-<Down>",    sendMessage $ ShrinkFrom U)
-- > , ("M-M1-C-<Left>",  sendMessage $ ShrinkFrom R)
-- > , ("M-M1-C-<Right>", sendMessage $ ExpandTowards R)
-- > , ("M-M1-C-<Up>",    sendMessage $ ShrinkFrom D)
-- > , ("M-M1-C-<Down>",  sendMessage $ ExpandTowards D)
-- > , ("M-s",            sendMessage $ BSP.Swap)
-- > , ("M-M1-s",         sendMessage $ Rotate) ]
--
-- If you have many windows open and the layout begins to look too hard to manage, you can 'Balance'
-- the layout, so that the current splittings are discarded and windows are tiled freshly in a way that
-- the split depth is minimized. You can combine this with 'Equalize', which does not change your tree,
-- but tunes the split ratios in a way that each window gets the same amount of space:
--
-- > , ((myModMask,               xK_a),     sendMessage Balance)
-- > , ((myModMask .|. shiftMask, xK_a),     sendMessage Equalize)
--

-- |Message for rotating the binary tree around the parent node of the window to the left or right
data TreeRotate = RotateL | RotateR deriving Typeable
instance Message TreeRotate

-- |Message to balance the tree in some way (Balance retiles the windows, Equalize changes ratios)
data TreeBalance = Balance | Equalize deriving Typeable
instance Message TreeBalance

-- |Message for resizing one of the cells in the BSP
data ResizeDirectional = ExpandTowards Direction2D | ShrinkFrom Direction2D | MoveSplit Direction2D deriving Typeable
instance Message ResizeDirectional

-- |Message for rotating a split (horizontal/vertical) in the BSP
data Rotate = Rotate deriving Typeable
instance Message Rotate

-- |Message for swapping the left child of a split with the right child of split
data Swap = Swap deriving Typeable
instance Message Swap

-- |Message to select the parent node instead of the leaf
data FocusParent = FocusParent deriving Typeable
instance Message FocusParent

data Axis = Horizontal | Vertical deriving (Show, Read, Eq)

oppositeDirection :: Direction2D -> Direction2D
oppositeDirection U = D
oppositeDirection D = U
oppositeDirection L = R
oppositeDirection R = L

oppositeAxis :: Axis -> Axis
oppositeAxis Vertical = Horizontal
oppositeAxis Horizontal = Vertical

toAxis :: Direction2D -> Axis
toAxis U = Horizontal
toAxis D = Horizontal
toAxis L = Vertical
toAxis R = Vertical

split :: Axis -> Rational -> Rectangle -> (Rectangle, Rectangle)
split Horizontal r (Rectangle sx sy sw sh) = (r1, r2) where
    r1 = Rectangle sx sy sw sh'
    r2 = Rectangle sx (sy + fromIntegral sh') sw (sh - sh')
    sh' = floor $ fromIntegral sh * r
split Vertical r (Rectangle sx sy sw sh) = (r1, r2) where
    r1 = Rectangle sx sy sw' sh
    r2 = Rectangle (sx + fromIntegral sw') sy (sw - sw') sh
    sw' = floor $ fromIntegral sw * r

data Split = Split { axis :: Axis
                   , ratio :: Rational
                   } deriving (Show, Read, Eq)

oppositeSplit :: Split -> Split
oppositeSplit (Split d r) = Split (oppositeAxis d) r

increaseRatio :: Split -> Rational -> Split
increaseRatio (Split d r) delta = Split d (min 0.9 (max 0.1 (r + delta)))

resizeDiff :: Rational
resizeDiff = 0.05


data Tree a = Leaf Int | Node { value :: a
                          , left :: Tree a
                          , right :: Tree a
                          } deriving (Show, Read, Eq)

numLeaves :: Tree a -> Int
numLeaves (Leaf _) = 1
numLeaves (Node _ l r) = numLeaves l + numLeaves r

-- right or left rotation of a (sub)tree, no effect if rotation not possible
rotTree :: Direction2D -> Tree a -> Tree a
rotTree _ (Leaf n) = (Leaf n)
rotTree R n@(Node _ (Leaf _) _) = n
rotTree L n@(Node _ _ (Leaf _)) = n
rotTree R (Node sp (Node sp2 l2 r2) r) = Node sp2 l2 (Node sp r2 r)
rotTree L (Node sp l (Node sp2 l2 r2)) = Node sp2 (Node sp l l2) r2
rotTree _ t = t


data Crumb a = LeftCrumb a (Tree a) | RightCrumb a (Tree a) deriving (Show, Read, Eq)

swapCrumb :: Crumb a -> Crumb a
swapCrumb (LeftCrumb s t) = RightCrumb s t
swapCrumb (RightCrumb s t) = LeftCrumb s t

parentVal :: Crumb a -> a
parentVal (LeftCrumb s _) = s
parentVal (RightCrumb s _) = s

modifyParentVal :: (a -> a) -> Crumb a -> Crumb a
modifyParentVal f (LeftCrumb s t) = LeftCrumb (f s) t
modifyParentVal f (RightCrumb s t) = RightCrumb (f s) t

type Zipper a = (Tree a, [Crumb a])

toZipper :: Tree a -> Zipper a
toZipper t = (t, [])

goLeft :: Zipper a -> Maybe (Zipper a)
goLeft (Leaf _, _) = Nothing
goLeft (Node x l r, bs) = Just (l, LeftCrumb x r:bs)

goRight :: Zipper a -> Maybe (Zipper a)
goRight (Leaf _, _) = Nothing
goRight (Node x l r, bs) = Just (r, RightCrumb x l:bs)

goUp :: Zipper a -> Maybe (Zipper a)
goUp (_, []) = Nothing
goUp (t, LeftCrumb x r:cs) = Just (Node x t r, cs)
goUp (t, RightCrumb x l:cs) = Just (Node x l t, cs)

goSibling :: Zipper a -> Maybe (Zipper a)
goSibling (_, []) = Nothing
goSibling z@(_, LeftCrumb _ _:_) = Just z >>= goUp >>= goRight
goSibling z@(_, RightCrumb _ _:_) = Just z >>= goUp >>= goLeft

top :: Zipper a -> Zipper a
top z = case goUp z of
          Nothing -> z
          Just z' -> top z'

toTree :: Zipper a -> Tree a
toTree = fst . top

goToNthLeaf :: Int -> Zipper a -> Maybe (Zipper a)
goToNthLeaf _ z@(Leaf _, _) = Just z
goToNthLeaf n z@(t, _) =
  if numLeaves (left t) > n
  then do z' <- goLeft z
          goToNthLeaf n z'
  else do z' <- goRight z
          goToNthLeaf (n - (numLeaves . left $ t)) z'

goToFocusedLocation :: (Int,Int,[Window]) -> Zipper a -> Maybe (Zipper a)
goToFocusedLocation (l,n,_) z = goToNthLeaf l z >>= goUpN n
  where goUpN 0 b = return b
        goUpN m b = goUp b >>= goUpN (m-1)

splitCurrentLeaf :: Zipper Split -> Maybe (Zipper Split)
splitCurrentLeaf (Leaf _, []) = Just (Node (Split Vertical 0.5) (Leaf 0) (Leaf 0), [])
splitCurrentLeaf (Leaf _, crumb:cs) = Just (Node (Split (oppositeAxis . axis . parentVal $ crumb) 0.5) (Leaf 0) (Leaf 0), crumb:cs)
splitCurrentLeaf _ = Nothing

removeCurrentLeaf :: Zipper a -> Maybe (Zipper a)
removeCurrentLeaf (Leaf _, []) = Nothing
removeCurrentLeaf (Leaf _, LeftCrumb _ r:cs) = Just (r, cs)
removeCurrentLeaf (Leaf _, RightCrumb _ l:cs) = Just (l, cs)
removeCurrentLeaf _ = Nothing

rotateCurrent :: Zipper Split -> Maybe (Zipper Split)
rotateCurrent l@(Leaf _, []) = Just l
rotateCurrent (n, c:cs) = Just (n, modifyParentVal oppositeSplit c:cs)
rotateCurrent _ = Nothing

swapCurrent :: Zipper a -> Maybe (Zipper a)
swapCurrent l@(Leaf _, []) = Just l
swapCurrent (n, c:cs) = Just (n, swapCrumb c:cs)
swapCurrent _ = Nothing

isAllTheWay :: Direction2D -> Zipper Split -> Bool
isAllTheWay _ (_, []) = True
isAllTheWay R (_, LeftCrumb s _:_)
  | axis s == Vertical = False
isAllTheWay L (_, RightCrumb s _:_)
  | axis s == Vertical = False
isAllTheWay D (_, LeftCrumb s _:_)
  | axis s == Horizontal = False
isAllTheWay U (_, RightCrumb s _:_)
  | axis s == Horizontal = False
isAllTheWay dir z = fromMaybe False $ goUp z >>= Just . isAllTheWay dir

expandTreeTowards :: Direction2D -> Zipper Split -> Maybe (Zipper Split)
expandTreeTowards _ z@(_, []) = Just z
expandTreeTowards dir z
  | isAllTheWay dir z = shrinkTreeFrom (oppositeDirection dir) z
expandTreeTowards R (t, LeftCrumb s r:cs)
  | axis s == Vertical = Just (t, LeftCrumb (increaseRatio s resizeDiff) r:cs)
expandTreeTowards L (t, RightCrumb s l:cs)
  | axis s == Vertical = Just (t, RightCrumb (increaseRatio s (-resizeDiff)) l:cs)
expandTreeTowards D (t, LeftCrumb s r:cs)
  | axis s == Horizontal = Just (t, LeftCrumb (increaseRatio s resizeDiff) r:cs)
expandTreeTowards U (t, RightCrumb s l:cs)
  | axis s == Horizontal = Just (t, RightCrumb (increaseRatio s (-resizeDiff)) l:cs)
expandTreeTowards dir z = goUp z >>= expandTreeTowards dir

shrinkTreeFrom :: Direction2D -> Zipper Split -> Maybe (Zipper Split)
shrinkTreeFrom _ z@(_, []) = Just z
shrinkTreeFrom R z@(_, LeftCrumb s _:_)
  | axis s == Vertical = Just z >>= goSibling >>= expandTreeTowards L
shrinkTreeFrom L z@(_, RightCrumb s _:_)
  | axis s == Vertical = Just z >>= goSibling >>= expandTreeTowards R
shrinkTreeFrom D z@(_, LeftCrumb s _:_)
  | axis s == Horizontal = Just z >>= goSibling >>= expandTreeTowards U
shrinkTreeFrom U z@(_, RightCrumb s _:_)
  | axis s == Horizontal = Just z >>= goSibling >>= expandTreeTowards D
shrinkTreeFrom dir z = goUp z >>= shrinkTreeFrom dir

-- Direction2D refers to which direction the divider should move.
autoSizeTree :: Direction2D -> Zipper Split -> Maybe (Zipper Split)
autoSizeTree _ z@(_, []) = Just z
autoSizeTree d z =
    Just z >>= getSplit (toAxis d) >>= resizeTree d

-- resizing once found the correct split. YOU MUST FIND THE RIGHT SPLIT FIRST.
resizeTree :: Direction2D -> Zipper Split -> Maybe (Zipper Split)
resizeTree _ z@(_, []) = Just z
resizeTree R z@(_, LeftCrumb _ _:_) =
  Just z >>= expandTreeTowards R
resizeTree L z@(_, LeftCrumb _ _:_) =
  Just z >>= shrinkTreeFrom    R
resizeTree U z@(_, LeftCrumb _ _:_) =
  Just z >>= shrinkTreeFrom    D
resizeTree D z@(_, LeftCrumb _ _:_) =
  Just z >>= expandTreeTowards D
resizeTree R z@(_, RightCrumb _ _:_) =
  Just z >>= shrinkTreeFrom    L
resizeTree L z@(_, RightCrumb _ _:_) =
  Just z >>= expandTreeTowards L
resizeTree U z@(_, RightCrumb _ _:_) =
  Just z >>= expandTreeTowards U
resizeTree D z@(_, RightCrumb _ _:_) =
  Just z >>= shrinkTreeFrom    U

getSplit :: Axis -> Zipper Split -> Maybe (Zipper Split)
getSplit _ (_, []) = Nothing
getSplit d z =
 do let fs = findSplit d z
    if isNothing fs
      then findClosest d z
      else fs

findClosest :: Axis -> Zipper Split -> Maybe (Zipper Split)
findClosest _ z@(_, []) = Just z
findClosest d z@(_, LeftCrumb s _:_)
  | axis s == d = Just z
findClosest d z@(_, RightCrumb s _:_)
  | axis s == d = Just z
findClosest d z = goUp z >>= findClosest d

findSplit :: Axis -> Zipper Split -> Maybe (Zipper Split)
findSplit _ (_, []) = Nothing
findSplit d z@(_, LeftCrumb s _:_)
  | axis s == d = Just z
findSplit d z = goUp z >>= findSplit d

resizeSplit :: Direction2D -> (Rational,Rational) -> Zipper Split -> Maybe (Zipper Split)
resizeSplit _ _ z@(_, []) = Just z
resizeSplit dir (xsc,ysc) z = case goToBorder dir z of
  Nothing -> Just z
  Just (t, crumb) -> Just $ case dir of
    R -> (t{value=sp{ratio=scaleRatio (ratio sp) xsc}}, crumb)
    D -> (t{value=sp{ratio=scaleRatio (ratio sp) ysc}}, crumb)
    L -> (t{value=sp{ratio=1-scaleRatio (1-ratio sp) xsc}}, crumb)
    U -> (t{value=sp{ratio=1-scaleRatio (1-ratio sp) ysc}}, crumb)
    where sp = value t
          scaleRatio r fac = min 0.9 $ max 0.1 $ r*fac

-- starting from a leaf, go to node representing a border of the according window
goToBorder :: Direction2D -> Zipper Split -> Maybe (Zipper Split)
goToBorder L z@(_, RightCrumb (Split Vertical _) _:_) = goUp z
goToBorder L z = goUp z >>= goToBorder L
goToBorder R z@(_, LeftCrumb  (Split Vertical _) _:_) = goUp z
goToBorder R z = goUp z >>= goToBorder R
goToBorder U z@(_, RightCrumb (Split Horizontal _) _:_) = goUp z
goToBorder U z = goUp z >>= goToBorder U
goToBorder D z@(_, LeftCrumb  (Split Horizontal _) _:_) = goUp z
goToBorder D z = goUp z >>= goToBorder D


data BinarySpacePartition a = BinarySpacePartition { getOldRects :: [(Window,Rectangle)]
                                                   , getFocusedNode :: (Int,Int,[Window]) -- leaf, steps up,deco
                                                   , getTree :: Maybe (Tree Split) } deriving (Show, Read)

-- | an empty BinarySpacePartition to use as a default for adding windows to.
emptyBSP :: BinarySpacePartition a
emptyBSP = BinarySpacePartition [] ((-1),0,[]) Nothing

makeBSP :: Tree Split -> BinarySpacePartition a
makeBSP = BinarySpacePartition [] ((-1),0,[]) . Just

makeZipper :: BinarySpacePartition a -> Maybe (Zipper Split)
makeZipper (BinarySpacePartition _ _ Nothing) = Nothing
makeZipper (BinarySpacePartition _ _ (Just t)) = Just . toZipper $ t

size :: BinarySpacePartition a -> Int
size = maybe 0 numLeaves . getTree

zipperToBinarySpacePartition :: Maybe (Zipper Split) -> BinarySpacePartition b
zipperToBinarySpacePartition Nothing = emptyBSP
zipperToBinarySpacePartition (Just z) = BinarySpacePartition [] ((-1),0,[]) . Just . toTree . top $ z

rectangles :: BinarySpacePartition a -> Rectangle -> [Rectangle]
rectangles (BinarySpacePartition _ _ Nothing) _ = []
rectangles (BinarySpacePartition _ _ (Just (Leaf _))) rootRect = [rootRect]
rectangles (BinarySpacePartition _ _ (Just node)) rootRect =
    rectangles (makeBSP . left $ node) leftBox ++
    rectangles (makeBSP . right $ node) rightBox
    where (leftBox, rightBox) = split (axis info) (ratio info) rootRect
          info = value node

getNodeRect :: BinarySpacePartition a -> Rectangle -> (Int,Int) -> Rectangle
getNodeRect b r (l,n) = fromMaybe (Rectangle 0 0 1 1)
                      $ (makeZipper b >>= goToFocusedLocation (l,n,[]) >>= getRect [])
  where getRect ls (_, []) = Just $ foldl (\r' (s,f) -> f $ split' s r') r ls
        getRect ls z@(_, LeftCrumb s _:_) = goUp z >>= getRect ((s,fst):ls)
        getRect ls z@(_, RightCrumb s _:_) = goUp z >>= getRect ((s,snd):ls)
        split' s = split (axis s) (ratio s)

doToNth :: (Zipper Split -> Maybe (Zipper Split)) -> BinarySpacePartition a -> Int -> BinarySpacePartition a
doToNth f b _ = zipperToBinarySpacePartition $ makeZipper b >>= goToFocusedLocation (getFocusedNode b) >>= f

splitNth :: BinarySpacePartition a -> Int -> BinarySpacePartition a
splitNth (BinarySpacePartition _ _ Nothing) _ = makeBSP (Leaf 0)
splitNth b n = doToNth splitCurrentLeaf b n

removeNth :: BinarySpacePartition a -> Int -> BinarySpacePartition a
removeNth (BinarySpacePartition _ _ Nothing) _ = emptyBSP
removeNth (BinarySpacePartition _ _ (Just (Leaf _))) _ = emptyBSP
removeNth b n = doToNth removeCurrentLeaf b n

rotateNth :: BinarySpacePartition a -> Int -> BinarySpacePartition a
rotateNth (BinarySpacePartition _ _ Nothing) _ = emptyBSP
rotateNth b@(BinarySpacePartition _ _ (Just (Leaf _))) _ = b
rotateNth b n = doToNth rotateCurrent b n

swapNth :: BinarySpacePartition a -> Int -> BinarySpacePartition a
swapNth (BinarySpacePartition _ _ Nothing) _ = emptyBSP
swapNth b@(BinarySpacePartition _ _ (Just (Leaf _))) _ = b
swapNth b n = doToNth swapCurrent b n

growNthTowards :: Direction2D -> BinarySpacePartition a -> Int -> BinarySpacePartition a
growNthTowards _ (BinarySpacePartition _ _ Nothing) _ = emptyBSP
growNthTowards _ b@(BinarySpacePartition _ _ (Just (Leaf _))) _ = b
growNthTowards dir b n = doToNth (expandTreeTowards dir) b n

shrinkNthFrom :: Direction2D -> BinarySpacePartition a -> Int -> BinarySpacePartition a
shrinkNthFrom _ (BinarySpacePartition _ _ Nothing) _ = emptyBSP
shrinkNthFrom _ b@(BinarySpacePartition _ _ (Just (Leaf _))) _ = b
shrinkNthFrom dir b n = doToNth (shrinkTreeFrom dir) b n

autoSizeNth :: Direction2D -> BinarySpacePartition a -> Int -> BinarySpacePartition a
autoSizeNth _ (BinarySpacePartition _ _ Nothing) _ = emptyBSP
autoSizeNth _ b@(BinarySpacePartition _ _ (Just (Leaf _))) _ = b
autoSizeNth dir b n = doToNth (autoSizeTree dir) b n

resizeSplitNth :: Direction2D -> (Rational,Rational) -> BinarySpacePartition a -> Int -> BinarySpacePartition a
resizeSplitNth _ _ (BinarySpacePartition _ _ Nothing) _ = emptyBSP
resizeSplitNth _ _ b@(BinarySpacePartition _ _ (Just (Leaf _))) _ = b
resizeSplitNth dir sc b n = doToNth (resizeSplit dir sc) b n

-- rotate tree left or right around parent of nth leaf
rotateTreeNth :: Direction2D -> BinarySpacePartition a -> Int -> BinarySpacePartition a
rotateTreeNth _ (BinarySpacePartition _ _ Nothing) _ = emptyBSP
rotateTreeNth U b _ = b
rotateTreeNth D b _ = b
rotateTreeNth dir b@(BinarySpacePartition _ _ (Just _)) n =
  doToNth (\t -> case goUp t of
                Nothing     -> Just t
                Just (t', c) -> Just (rotTree dir t', c)) b n

-- set the split ratios so that all windows have the same size, without changing tree itself
equalizeTree :: BinarySpacePartition a -> BinarySpacePartition a
equalizeTree (BinarySpacePartition _ _ Nothing) = emptyBSP
equalizeTree (BinarySpacePartition olr foc (Just t)) = BinarySpacePartition olr foc $ Just $ eql t
  where eql (Leaf n) = Leaf n
        eql n@(Node s l r) = Node s{ratio=fromIntegral (numLeaves l) % fromIntegral (numLeaves n)}
                                  (eql l) (eql r)

-- generate a symmetrical balanced tree for n leaves
balancedTree :: Int -> BinarySpacePartition a
balancedTree n =  numerateLeaves $ BinarySpacePartition [] ((-1),0,[]) $ Just $ balanced n
  where balanced 1 = Leaf 0
        balanced 2 = Node (Split Horizontal 0.5) (Leaf 0) (Leaf 0)
        balanced m = Node (Split Horizontal 0.5) (balanced (m`div`2)) (balanced (m-m`div`2))

-- attempt to rotate splits optimally in order choose more quad-like rects
optimizeOrientation :: Rectangle -> BinarySpacePartition a -> BinarySpacePartition a
optimizeOrientation _ (BinarySpacePartition _ _ Nothing) = emptyBSP
optimizeOrientation rct (BinarySpacePartition olr foc (Just t)) = BinarySpacePartition olr foc $ Just $ opt t rct
  where opt (Leaf v) _ = (Leaf v)
        opt (Node sp l r) rect = Node sp' (opt l lrect) (opt r rrect)
         where (Rectangle _ _ w1 h1,Rectangle _ _ w2 h2) = split (axis sp) (ratio sp) rect
               (Rectangle _ _ w3 h3,Rectangle _ _ w4 h4) = split (axis $ oppositeSplit sp) (ratio sp) rect
               f w h = if w > h then w'/h' else h'/w' where (w',h') = (fromIntegral w :: Double, fromIntegral h :: Double)
               wratio = min (f w1 h1) (f w2 h2)
               wratio' = min (f w3 h3) (f w4 h4)
               sp' = if wratio<wratio' then sp else oppositeSplit sp
               (lrect, rrect) = split (axis sp') (ratio sp') rect

-- traverse and collect all leave numbers, left to right
flattenLeaves :: BinarySpacePartition a -> [Int]
flattenLeaves (BinarySpacePartition _ _ Nothing) = []
flattenLeaves (BinarySpacePartition _ _ (Just t)) = flatten t
 where flatten (Leaf n) = [n]
       flatten (Node _ l r) = flatten l++flatten r

-- we do this before an action to look afterwards which leaves moved where
numerateLeaves :: BinarySpacePartition a -> BinarySpacePartition a
numerateLeaves b@(BinarySpacePartition _ _ Nothing) = b
numerateLeaves (BinarySpacePartition olr foc (Just t)) = BinarySpacePartition olr foc . Just . snd $ numerate 0 t
  where numerate n (Leaf _) = (n+1, Leaf n)
        numerate n (Node s l r) = (n'', Node s nl nr)
          where (n', nl) = numerate n l
                (n'', nr) = numerate n' r

-- returns index of focused window or 0 for empty stack
index :: W.Stack a -> Int
index s = case toIndex (Just s) of
            (_, Nothing) -> 0
            (_, Just int) -> int

--move windows to new positions according to tree transformations, keeping focus on originally focused window
--CAREFUL here! introduce a bug here and have fun debugging as your windows start to disappear or explode
adjustStack :: Maybe (W.Stack Window)  --original stack
            -> Maybe (W.Stack Window)  --stack without floating windows
            -> [Window]                --just floating windows of this WS
            -> Maybe (BinarySpacePartition Window) -- Tree with numbered leaves telling what to move where
            -> Maybe (W.Stack Window)  --resulting stack
adjustStack orig Nothing _ _ = orig   --no new stack -> no changes
adjustStack orig _ _ Nothing = orig   --empty tree   -> no changes
adjustStack orig s fw (Just b) =
 if length ls<length ws then orig     --less leaves than non-floating windows -> tree incomplete, no changes
 else fromIndex ws' fid'
 where ws' = (mapMaybe ((flip M.lookup) wsmap) ls)++fw
       fid' = fromMaybe 0 $ elemIndex focused ws'
       wsmap = M.fromList $ zip [0..] ws -- map: old index in list -> window
       ls = flattenLeaves b             -- get new index ordering from tree
       (ws,fid) = toIndex s
       focused = ws !! (fromMaybe 0 $ fid)

--replace the window stack of the managed workspace with our modified stack
replaceStack :: Maybe (W.Stack Window) -> X ()
replaceStack s = do
  st <- get
  let wset = windowset st
      cur  = W.current wset
      wsp  = W.workspace cur
  put st{windowset=wset{W.current=cur{W.workspace=wsp{W.stack=s}}}}

replaceFloating :: M.Map Window W.RationalRect -> X ()
replaceFloating wsm = do
  st <- get
  let wset = windowset st
  put st{windowset=wset{W.floating=wsm}}

-- some helpers to filter windows
--
getFloating :: X [Window]
getFloating = (M.keys . W.floating) <$> gets windowset -- all floating windows

getStackSet :: X (Maybe (W.Stack Window))
getStackSet = (W.stack . W.workspace . W.current) <$> gets windowset -- windows on this WS (with floating)

withoutFloating :: [Window] -> Maybe (W.Stack Window) -> Maybe (W.Stack Window)
withoutFloating fs = maybe Nothing (unfloat fs)

getScreenRect :: X Rectangle
getScreenRect = (screenRect . W.screenDetail . W.current) <$> gets windowset

-- ignore messages if current focus is on floating window, otherwise return stack without floating
unfloat :: [Window] -> W.Stack Window -> Maybe (W.Stack Window)
unfloat fs s = if W.focus s `elem` fs
      then Nothing
      else Just $ s{W.up = W.up s \\ fs, W.down = W.down s \\ fs}

instance LayoutClass BinarySpacePartition Window where
  doLayout b r s = do
    let b' = layout b
    b'' <- if size b /= size b' then clearBorder b' else updateBorder r b'
    -- when (getFocusedNode b/= getFocusedNode b'') $ debug $ show $ getFocusedNode b''

    let rs = rectangles b'' r
        wrs = zip ws rs
    return (wrs, Just b''{getOldRects=wrs,getFocusedNode=getFocusedNode b''})
    where
      ws = W.integrate s
      l = length ws
      n = index s
      layout bsp
        | l == count = bsp
        | l > count = layout $ splitNth bsp n
        | otherwise = layout $ removeNth bsp n
        where count = size bsp

  handleMessage b_orig m
   | Just FocusParent <- fromMessage m = focusParent b
   | Just msg@(SetGeometry _) <- fromMessage m = handleResize b msg >>= return . updateNodeFocus
   | otherwise = do
       ws <- getStackSet
       fs <- getFloating
       r <- getScreenRect
       let lws = withoutFloating fs ws                                    -- tiled windows on WS
           lfs = (maybe [] W.integrate ws) \\ (maybe [] W.integrate lws)  -- untiled windows on WS
           b'  = lws >>= handleMesg r         -- transform tree (concerns only tiled windows)
           ws' = adjustStack ws lws lfs b'   -- apply transformation to window stack, reintegrate floating wins
       replaceStack ws'
       return $ updateNodeFocus b'
    where handleMesg r s = msum [fmap (`rotate` s)   (fromMessage m)
                                ,fmap (`resize` s)   (fromMessage m)
                                ,fmap (`swap` s)     (fromMessage m)
                                ,fmap (`rotateTr` s) (fromMessage m)
                                ,fmap (balanceTr r)  (fromMessage m)
                              ]

          updateNodeFocus = maybe Nothing (\bsp -> Just $ bsp{getFocusedNode=clr $ getFocusedNode b_orig})
            where clr (_,_,ws) = ((-1),0,ws)

          b = numerateLeaves b_orig

          rotate Rotate s = rotateNth b $ index s
          swap Swap s = swapNth b $ index s
          resize (ExpandTowards dir) s = growNthTowards dir b $ index s
          resize (ShrinkFrom dir) s = shrinkNthFrom dir b $ index s
          resize (MoveSplit dir) s = autoSizeNth dir b $ index s
          rotateTr RotateL s = rotateTreeNth L b $ index s
          rotateTr RotateR s = rotateTreeNth R b $ index s
          balanceTr _ Equalize = equalizeTree b
          balanceTr r Balance = optimizeOrientation r $ balancedTree (size b)

  description _  = "BSP"

-- React to SetGeometry message to work with BorderResize/MouseResize
handleResize :: BinarySpacePartition Window -> WindowArrangerMsg -> X (Maybe (BinarySpacePartition Window))
handleResize b (SetGeometry newrect@(Rectangle _ _ w h)) = do
  ws <- getStackSet
  fs <- getFloating
  case W.focus <$> ws of
    Nothing -> return Nothing
    Just win -> do
      (_,_,_,_,_,mx,my,_) <- withDisplay (\d -> (io $ queryPointer d win))
      let oldrect@(Rectangle _ _ ow oh) = fromMaybe (Rectangle 0 0 0 0) $ lookup win $ getOldRects b
      let (xsc,ysc)   = (fi w % fi ow, fi h % fi oh)
          (xsc',ysc') = (rough xsc, rough ysc)
          dirs = changedDirs oldrect newrect (fi mx,fi my)
          n = elemIndex win $ maybe [] W.integrate $ withoutFloating fs ws
      -- unless (isNothing dir) $ debug $
      --       show (fi x-fi ox,fi y-fi oy) ++ show (fi w-fi ow,fi h-fi oh)
      --       ++ show dir ++ " " ++ show win ++ " " ++ show (mx,my)
      return $ case n of
                Just n' -> Just $ foldl' (\b' d -> resizeSplitNth d (xsc',ysc') b' n') b dirs
                Nothing -> Nothing --focused window is floating -> ignore
  where rough v = min 1.5 $ max 0.75 v -- extreme scale factors are forbidden
handleResize _ _ = return Nothing

-- find out which borders have been pulled. We need the old and new rects and the mouse coordinates
changedDirs :: Rectangle -> Rectangle -> (Int,Int) -> [Direction2D]
changedDirs (Rectangle _ _ ow oh) (Rectangle _ _ w h) (mx,my) = catMaybes [lr, ud]
 where lr = if ow==w then Nothing
            else Just (if (fi mx :: Double) >  (fi ow :: Double)/2 then R else L)
       ud = if oh==h then Nothing
            else Just (if (fi my :: Double) > (fi oh :: Double)/2 then D else U)

-- move focus to next higher parent node of current focused leaf if possible, cyclic
focusParent :: BinarySpacePartition a -> X (Maybe (BinarySpacePartition a))
focusParent b = do
  foc <- maybe 0 index <$> (withoutFloating <$> getFloating <*> getStackSet)
  let (l,n,d) = getFocusedNode b
  return . Just $ if foc/= l then b{getFocusedNode=(foc,1,d)}
                            else b{getFocusedNode=upFocus (l,n,d)}
  -- debug $ "Focus Parent: "++(maybe "" (show.getFocusedNode) ret)
  where upFocus (l,n,d)
         | canFocus (l,n+1,d) = (l,n+1,d)
         | otherwise = (l,0,d)
        canFocus (l,n,d) = isJust $ makeZipper b >>= goToFocusedLocation (l,n+1,d)

-- "focus parent" border helpers

updateBorder :: Rectangle -> BinarySpacePartition a -> X (BinarySpacePartition a)
updateBorder r b = do
  foc <- maybe 0 index <$> (withoutFloating <$> getFloating <*> getStackSet)
  let (l,n,ws) = getFocusedNode b
  removeBorder ws
  if n==0 || foc/=l then return b{getFocusedNode=(foc,0,[])}
    else createBorder (getNodeRect b r (l,n)) Nothing >>= (\ws' -> return b{getFocusedNode=(l,n,ws')})

clearBorder :: BinarySpacePartition a -> X (BinarySpacePartition a)
clearBorder b = do
  let (_,_,ws) = getFocusedNode b
  removeBorder ws
  return b{getFocusedNode=((-1),0,[])}

-- create a window for each border line, show, add into stack and set floating
createBorder :: Rectangle -> Maybe String -> X [Window]
createBorder (Rectangle wx wy ww wh) c = do
  bw <- asks (borderWidth.config)
  bc <- case c of
         Nothing -> asks (focusedBorderColor.config)
         Just s -> return s
  let rects = [ Rectangle wx wy ww (fi bw)
              , Rectangle wx wy (fi bw) wh
              , Rectangle wx (wy+fi wh-fi bw) ww (fi bw)
              , Rectangle (wx+fi ww-fi bw) wy (fi bw) wh
              ]
  ws <- mapM (\r -> createNewWindow r Nothing bc False) rects
  showWindows ws
  maybe Nothing (\s -> Just s{W.down=W.down s ++ ws}) <$> getStackSet >>= replaceStack
  M.union (M.fromList $ zip ws $ map toRR rects) . W.floating . windowset <$> get >>= replaceFloating
  modify (\s -> s{mapped=mapped s `S.union` S.fromList ws})

  -- show <$> mapM isClient ws >>= debug
  return ws
  where toRR (Rectangle x y w h) = W.RationalRect (fi x) (fi y) (fi w) (fi h)

-- remove border line windows from stack + floating, kill
removeBorder :: [Window] -> X ()
removeBorder ws = do
  modify (\s -> s{mapped = mapped s `S.difference` S.fromList ws})
  flip (foldl (flip M.delete)) ws . W.floating . windowset <$> get >>= replaceFloating
  maybe Nothing (\s -> Just s{W.down=W.down s \\ ws}) <$> getStackSet >>= replaceStack
  deleteWindows ws