1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
|
{**********************************************************************
FFT.cpp
Dominic Mazzoni
September 2000
***********************************************************************
Fast Fourier Transform routines.
This file contains a few FFT routines, including a real-FFT
routine that is almost twice as fast as a normal complex FFT,
and a power spectrum routine when you know you don't care
about phase information.
Some of this code was based on a free implementation of an FFT
by Don Cross, available on the web at:
http://www.intersrv.com/~dcross/fft.html
The basic algorithm for his code was based on Numerican Recipes
in Fortran. I optimized his code further by reducing array
accesses, caching the bit reversal table, and eliminating
float-to-double conversions, and I added the routines to
calculate a real FFT and a real power spectrum.
***********************************************************************
Salvo Ventura - November 2006
Added more window functions:
* 4: Blackman
* 5: Blackman-Harris
* 6: Welch
* 7: Gaussian(a=2.5)
* 8: Gaussian(a=3.5)
* 9: Gaussian(a=4.5)
***********************************************************************
This file is part of Audacity 1.3.4 beta (http://audacity.sourceforge.net/)
Ported to Pascal by the UltraStar Deluxe Team
}
unit UFFT;
{$ifdef fpc}
{$mode delphi}{$H+}
{$endif}
interface
type
TSingleArray = array[0..0] of Single;
PSingleArray = ^TSingleArray;
procedure PowerSpectrum(NumSamples: Integer; In_, Out_: PSingleArray);
procedure WindowFunc(NumSamples: Integer; in_: PSingleArray); inline;
implementation
uses
SysUtils;
type TIntArray = array[0..0] of Integer;
type TIntIntArray = array[0..0] of ^TIntArray;
var gFFTBitTable: ^TIntIntArray;
const MaxFastBits: Integer = 16;
function IsPowerOfTwo(x: Integer): Boolean;
begin
if (x < 2) then
result := false
else if ((x and (x - 1)) <> 0) then { Thanks to 'byang' for this cute trick! }
result := false
else
result := true;
end;
function NumberOfBitsNeeded(PowerOfTwo: Integer): Integer;
var i: Integer;
begin
if (PowerOfTwo < 2) then begin
Writeln(ErrOutput, Format('Error: FFT called with size %d\n', [PowerOfTwo]));
Abort;
end;
i := 0;
while(true) do begin
if (PowerOfTwo and (1 shl i) <> 0) then begin
result := i;
Exit;
end;
Inc(i);
end;
end;
function ReverseBits(index, NumBits: Integer): Integer;
var
i, rev: Integer;
begin
rev := 0;
for i := 0 to NumBits-1 do begin
rev := (rev shl 1) or (index and 1);
index := index shr 1;
end;
result := rev;
end;
procedure InitFFT();
var
len: Integer;
b, i: Integer;
begin
GetMem(gFFTBitTable, MaxFastBits * sizeof(PSingle));
len := 2;
for b := 1 to MaxFastBits do begin
GetMem(gFFTBitTable^[b - 1], len * sizeof(Single));
for i := 0 to len-1 do
gFFTBitTable^[b - 1][i] := ReverseBits(i, b);
len := len shl 1;
end;
end;
function FastReverseBits(i, NumBits: Integer): Integer; inline;
begin
if (NumBits <= MaxFastBits) then
result := gFFTBitTable[NumBits - 1][i]
else
result := ReverseBits(i, NumBits);
end;
{*
* Complex Fast Fourier Transform
*}
procedure FFT(NumSamples: Integer;
InverseTransform: boolean;
RealIn, ImagIn, RealOut, ImagOut: PSingleArray);
var
NumBits: Integer; { Number of bits needed to store indices }
i, j, k, n: Integer;
BlockSize, BlockEnd: Integer;
delta_angle: Double;
angle_numerator: Double;
tr, ti: Double; { temp real, temp imaginary }
sm2, sm1, cm2, cm1: Double;
w: Double;
ar0, ar1, ar2, ai0, ai1, ai2: Double;
denom: Single;
begin
angle_numerator := 2.0 * Pi;
if (not IsPowerOfTwo(NumSamples)) then begin
Writeln(ErrOutput, Format('%d is not a power of two', [NumSamples]));
Abort;
end;
if (gFFTBitTable = nil) then
InitFFT();
if (InverseTransform) then
angle_numerator := -angle_numerator;
NumBits := NumberOfBitsNeeded(NumSamples);
{
** Do simultaneous data copy and bit-reversal ordering into outputs...
}
for i := 0 to NumSamples-1 do begin
j := FastReverseBits(i, NumBits);
RealOut[j] := RealIn[i];
if(ImagIn = nil) then
ImagOut[j] := 0.0
else
ImagOut[j] := ImagIn[i];
end;
{
** Do the FFT itself...
}
BlockEnd := 1;
BlockSize := 2;
while(BlockSize <= NumSamples) do
begin
delta_angle := angle_numerator / BlockSize;
sm2 := sin(-2 * delta_angle);
sm1 := sin(-delta_angle);
cm2 := cos(-2 * delta_angle);
cm1 := cos(-delta_angle);
w := 2 * cm1;
i := 0;
while(i < NumSamples) do
begin
ar2 := cm2;
ar1 := cm1;
ai2 := sm2;
ai1 := sm1;
j := i;
for n := 0 to BlockEnd-1 do
begin
ar0 := w * ar1 - ar2;
ar2 := ar1;
ar1 := ar0;
ai0 := w * ai1 - ai2;
ai2 := ai1;
ai1 := ai0;
k := j + BlockEnd;
tr := ar0 * RealOut[k] - ai0 * ImagOut[k];
ti := ar0 * ImagOut[k] + ai0 * RealOut[k];
RealOut[k] := RealOut[j] - tr;
ImagOut[k] := ImagOut[j] - ti;
RealOut[j] := RealOut[j] + tr;
ImagOut[j] := ImagOut[j] + ti;
Inc(j);
end;
Inc(i, BlockSize);
end;
BlockEnd := BlockSize;
BlockSize := BlockSize shl 1;
end;
{
** Need to normalize if inverse transform...
}
if (InverseTransform) then begin
denom := NumSamples;
for i := 0 to NumSamples-1 do begin
RealOut[i] := RealOut[i] / denom;
ImagOut[i] := ImagOut[i] / denom;
end;
end;
end;
{*
* PowerSpectrum
*
* This function computes the same as RealFFT, above, but
* adds the squares of the real and imaginary part of each
* coefficient, extracting the power and throwing away the
* phase.
*
* For speed, it does not call RealFFT, but duplicates some
* of its code.
*}
procedure PowerSpectrum(NumSamples: Integer; In_, Out_: PSingleArray);
var
Half: Integer;
i: Integer;
theta: Single;
tmpReal, tmpImag, RealOut, ImagOut: PSingleArray;
wtemp: Single;
wpr, wpi, wr, wi: Single;
i3: Integer;
h1r, h1i, h2r, h2i, rt, it: Single;
begin
Half := NumSamples div 2;
theta := Pi / Half;
GetMem(tmpReal, Half * sizeof(Single));
GetMem(tmpImag, Half * sizeof(Single));
GetMem(RealOut, Half * sizeof(Single));
GetMem(ImagOut, Half * sizeof(Single));
for i := 0 to Half-1 do begin
tmpReal[i] := In_[2 * i];
tmpImag[i] := In_[2 * i + 1];
end;
FFT(Half, false, tmpReal, tmpImag, RealOut, ImagOut);
wtemp := sin(0.5 * theta);
wpr := -2.0 * wtemp * wtemp;
wpi := sin(theta);
wr := 1.0 + wpr;
wi := wpi;
for i := 1 to (Half div 2)-1 do
begin
i3 := Half - i;
h1r := 0.5 * (RealOut[i] + RealOut[i3]);
h1i := 0.5 * (ImagOut[i] - ImagOut[i3]);
h2r := 0.5 * (ImagOut[i] + ImagOut[i3]);
h2i := -0.5 * (RealOut[i] - RealOut[i3]);
rt := h1r + wr * h2r - wi * h2i;
it := h1i + wr * h2i + wi * h2r;
Out_[i] := rt * rt + it * it;
rt := h1r - wr * h2r + wi * h2i;
it := -h1i + wr * h2i + wi * h2r;
Out_[i3] := rt * rt + it * it;
wtemp := wr;
wr := wtemp * wpr - wi * wpi + wr;
wi := wi * wpr + wtemp * wpi + wi;
end;
h1r := RealOut[0];
rt := h1r + ImagOut[0];
it := h1r - ImagOut[0];
Out_[0] := rt * rt + it * it;
rt := RealOut[Half div 2];
it := ImagOut[Half div 2];
Out_[Half div 2] := rt * rt + it * it;
FreeMem(tmpReal);
FreeMem(tmpImag);
FreeMem(RealOut);
FreeMem(ImagOut);
end;
procedure WindowFunc(NumSamples: Integer; in_: PSingleArray); inline;
var
i: Integer;
begin
for i := 0 to NumSamples-1 do
in_[i] := in_[i] * (0.50 - 0.50 * cos(2 * Pi * i / (NumSamples - 1)));
end;
end.
|