1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
|
unit URecord;
interface
{$IFDEF FPC}
{$MODE Delphi}
{$ENDIF}
{$I switches.inc}
uses Classes,
Math,
SysUtils,
UCommon,
UMusic,
UIni;
const
BaseToneFreq = 65.4064; // lowest (half-)tone to analyze (C2 = 65.4064 Hz)
NumHalftones = 36; // C2-B4 (for Whitney and my high voice)
type
TCaptureBuffer = class
private
BufferNew: TMemoryStream; // buffer for newest samples
function GetToneString: string; // converts a tone to its string represenatation;
public
BufferArray: array[0..4095] of smallint; // newest 4096 samples
BufferLong: TMemoryStream; // full buffer
AnalysisBufferSize: integer; // number of samples of BufferArray to analyze
AudioFormat: TAudioFormatInfo;
// pitch detection
ToneValid: boolean; // true if Tone contains a valid value (otherwise it contains noise)
Tone: integer; // tone relative to one octave (e.g. C2=C3=C4). Range: 0-11
ToneAbs: integer; // absolute (full range) tone (e.g. C2<>C3). Range: 0..NumHalftones-1
// methods
constructor Create;
destructor Destroy; override;
procedure Clear;
procedure ProcessNewBuffer;
// use to analyze sound from buffers to get new pitch
procedure AnalyzeBuffer;
// we call it to analyze sound by checking Autocorrelation
procedure AnalyzeByAutocorrelation;
// use this to check one frequency by Autocorrelation
function AnalyzeAutocorrelationFreq(Freq: real): real;
function MaxSampleVolume: Single;
property ToneString: string READ GetToneString;
end;
TAudioInputDeviceSource = record
Name: string;
end;
// soundcard input-devices information
TAudioInputDevice = class
public
CfgIndex: integer; // index of this device in Ini.InputDeviceConfig
Description: string; // soundcard name/description
Source: array of TAudioInputDeviceSource; // soundcard input(-source)s
SourceSelected: integer; // unused. What is this good for?
MicSource: integer; // unused. What is this good for?
AudioFormat: TAudioFormatInfo; // capture format info (e.g. 44.1kHz SInt16 stereo)
CaptureChannel: array of TCaptureBuffer; // sound-buffer references used for mono or stereo channel's capture data
destructor Destroy; override;
procedure LinkCaptureBuffer(ChannelIndex: integer; Sound: TCaptureBuffer);
function Start(): boolean; virtual; abstract;
procedure Stop(); virtual; abstract;
end;
TAudioInputProcessor = class
public
Sound: array of TCaptureBuffer; // sound-buffers for every player
Device: array of TAudioInputDevice;
constructor Create;
// handle microphone input
procedure HandleMicrophoneData(Buffer: Pointer; Size: Cardinal;
InputDevice: TAudioInputDevice);
end;
TAudioInputBase = class( TInterfacedObject, IAudioInput )
private
Started: boolean;
protected
function UnifyDeviceName(const name: string; deviceIndex: integer): string;
function UnifyDeviceSourceName(const name: string; const deviceName: string): string;
public
function GetName: String; virtual; abstract;
function InitializeRecord: boolean; virtual; abstract;
procedure CaptureStart;
procedure CaptureStop;
end;
SmallIntArray = array [0..maxInt shr 1-1] of smallInt;
PSmallIntArray = ^SmallIntArray;
function AudioInputProcessor(): TAudioInputProcessor;
implementation
uses
ULog,
UMain;
var
singleton_AudioInputProcessor : TAudioInputProcessor = nil;
// FIXME: Race-Conditions between Callback-thread and main-thread
// on BufferArray (maybe BufferNew also).
// Use SDL-mutexes to solve this problem.
{ Global }
function AudioInputProcessor(): TAudioInputProcessor;
begin
if singleton_AudioInputProcessor = nil then
singleton_AudioInputProcessor := TAudioInputProcessor.create();
result := singleton_AudioInputProcessor;
end;
{ TAudioInputDevice }
destructor TAudioInputDevice.Destroy;
var
i: integer;
begin
Stop();
Source := nil;
CaptureChannel := nil;
FreeAndNil(AudioFormat);
inherited Destroy;
end;
procedure TAudioInputDevice.LinkCaptureBuffer(ChannelIndex: integer; Sound: TCaptureBuffer);
begin
// check bounds
if ((ChannelIndex < 0) or (ChannelIndex > High(CaptureChannel))) then
Exit;
// reset audio-format of old capture-buffer
if (CaptureChannel[ChannelIndex] <> nil) then
CaptureChannel[ChannelIndex].AudioFormat := nil;
// set audio-format of new capture-buffer
if (Sound <> nil) then
Sound.AudioFormat := AudioFormat;
// replace old with new buffer
CaptureChannel[ChannelIndex] := Sound;
end;
{ TSound }
constructor TCaptureBuffer.Create;
begin
inherited;
BufferNew := TMemoryStream.Create;
BufferLong := TMemoryStream.Create;
AnalysisBufferSize := Min(4*1024, Length(BufferArray));
end;
destructor TCaptureBuffer.Destroy;
begin
AudioFormat := nil;
FreeAndNil(BufferNew);
FreeAndNil(BufferLong);
inherited;
end;
procedure TCaptureBuffer.Clear;
begin
if assigned(BufferNew) then
BufferNew.Clear;
if assigned(BufferLong) then
BufferLong.Clear;
FillChar(BufferArray[0], Length(BufferArray) * SizeOf(SmallInt), 0);
end;
procedure TCaptureBuffer.ProcessNewBuffer;
var
SkipCount: integer;
NumSamples: integer;
SampleIndex: integer;
begin
// process BufferArray
SkipCount := 0;
NumSamples := BufferNew.Size div 2;
// check if we have more new samples than we can store
if (NumSamples > Length(BufferArray)) then
begin
// discard the oldest of the new samples
SkipCount := NumSamples - Length(BufferArray);
NumSamples := Length(BufferArray);
end;
// move old samples to the beginning of the array (if necessary)
for SampleIndex := NumSamples to High(BufferArray) do
BufferArray[SampleIndex-NumSamples] := BufferArray[SampleIndex];
// skip samples if necessary
BufferNew.Seek(2*SkipCount, soBeginning);
// copy samples
BufferNew.ReadBuffer(BufferArray[Length(BufferArray)-NumSamples], 2*NumSamples);
// save capture-data to BufferLong if neccessary
if (Ini.SavePlayback = 1) then
begin
BufferNew.Seek(0, soBeginning);
BufferLong.CopyFrom(BufferNew, BufferNew.Size);
end;
end;
procedure TCaptureBuffer.AnalyzeBuffer;
var
Volume: real;
MaxVolume: real;
SampleIndex: integer;
Threshold: real;
begin
ToneValid := false;
ToneAbs := -1;
Tone := -1;
// find maximum volume of first 1024 samples
MaxVolume := 0;
for SampleIndex := 0 to 1023 do
begin
Volume := Abs(BufferArray[SampleIndex]) / -Low(Smallint);
if Volume > MaxVolume then
MaxVolume := Volume;
end;
case Ini.Threshold of
0: Threshold := 0.05;
1: Threshold := 0.1;
2: Threshold := 0.15;
3: Threshold := 0.2;
else Threshold := 0.1;
end;
// check if signal has an acceptable volume (ignore background-noise)
if MaxVolume >= Threshold then
begin
// analyse the current voice pitch
AnalyzeByAutocorrelation;
ToneValid := true;
end;
end;
procedure TCaptureBuffer.AnalyzeByAutocorrelation;
var
ToneIndex: integer;
CurFreq: real;
CurWeight: real;
MaxWeight: real;
MaxTone: integer;
const
HalftoneBase = 1.05946309436; // 2^(1/12) -> HalftoneBase^12 = 2 (one octave)
begin
// prepare to analyze
MaxWeight := -1;
// analyze halftones
// Note: at the lowest tone (~65Hz) and a buffer-size of 4096
// at 44.1 (or 48kHz) only 6 (or 5) samples are compared, this might be
// too few samples -> use a bigger buffer-size
for ToneIndex := 0 to NumHalftones-1 do
begin
CurFreq := BaseToneFreq * Power(HalftoneBase, ToneIndex);
CurWeight := AnalyzeAutocorrelationFreq(CurFreq);
// TODO: prefer higher frequencies (use >= or use downto)
if (CurWeight > MaxWeight) then
begin
// this frequency has a higher weight
MaxWeight := CurWeight;
MaxTone := ToneIndex;
end;
end;
ToneAbs := MaxTone;
Tone := MaxTone mod 12;
end;
// result medium difference
function TCaptureBuffer.AnalyzeAutocorrelationFreq(Freq: real): real;
var
Dist: real; // distance (0=equal .. 1=totally different) between correlated samples
AccumDist: real; // accumulated distances
SampleIndex: integer; // index of sample to analyze
CorrelatingSampleIndex: integer; // index of sample one period ahead
SamplesPerPeriod: integer; // samples in one period
begin
SampleIndex := 0;
SamplesPerPeriod := Round(AudioFormat.SampleRate/Freq);
CorrelatingSampleIndex := SampleIndex + SamplesPerPeriod;
AccumDist := 0;
// compare correlating samples
while (CorrelatingSampleIndex < AnalysisBufferSize) do
begin
// calc distance (correlation: 1-dist) to corresponding sample in next period
Dist := Abs(BufferArray[SampleIndex] - BufferArray[CorrelatingSampleIndex]) /
High(Word);
AccumDist := AccumDist + Dist;
Inc(SampleIndex);
Inc(CorrelatingSampleIndex);
end;
// return "inverse" average distance (=correlation)
Result := 1 - AccumDist / AnalysisBufferSize;
end;
function TCaptureBuffer.MaxSampleVolume: Single;
var
lSampleIndex: Integer;
lMaxVol : Longint;
begin;
// FIXME: lock buffer to avoid race-conditions
lMaxVol := 0;
for lSampleIndex := 0 to High(BufferArray) do
begin
if Abs(BufferArray[lSampleIndex]) > lMaxVol then
lMaxVol := Abs(BufferArray[lSampleIndex]);
end;
result := lMaxVol / -Low(Smallint);
end;
const
ToneStrings: array[0..11] of string = (
'C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B'
);
function TCaptureBuffer.GetToneString: string;
begin
if (ToneValid) then
Result := ToneStrings[Tone] + IntToStr(ToneAbs div 12 + 2)
else
Result := '-';
end;
{ TAudioInputProcessor }
constructor TAudioInputProcessor.Create;
var
i: integer;
begin
SetLength(Sound, 6 {max players});//Ini.Players+1);
for i := 0 to High(Sound) do
begin
Sound[i] := TCaptureBuffer.Create;
end;
end;
{*
* Handle captured microphone input data.
* Params:
* Buffer - buffer of signed 16bit interleaved stereo PCM-samples.
* Interleaved means that a right-channel sample follows a left-
* channel sample and vice versa (0:left[0],1:right[0],2:left[1],...).
* Length - number of bytes in Buffer
* Input - Soundcard-Input used for capture
*}
procedure TAudioInputProcessor.HandleMicrophoneData(Buffer: Pointer; Size: Cardinal; InputDevice: TAudioInputDevice);
var
Value: integer;
ChannelBuffer: PChar; // buffer handled as array of bytes (offset relative to channel)
SampleBuffer: PSmallIntArray; // buffer handled as array of samples
Boost: byte;
ChannelCount: integer;
ChannelIndex: integer;
ChannelOffset: integer;
CaptureChannel: TCaptureBuffer;
AudioFormat: TAudioFormatInfo;
FrameSize: integer;
NumSamples: integer;
NumFrames: integer; // number of frames (stereo: 2xsamples)
i: integer;
begin
// set boost
case Ini.MicBoost of
0: Boost := 1;
1: Boost := 2;
2: Boost := 4;
3: Boost := 8;
else Boost := 1;
end;
AudioFormat := InputDevice.AudioFormat;
// FIXME: At the moment we assume a SInt16 format
// TODO: use SDL_AudioConvert to convert to SInt16 but do NOT change the
// samplerate (SDL does not convert 44.1kHz to 48kHz so we might get wrong
// results in the analysis phase otherwise)
if (AudioFormat.Format <> asfS16) then
begin
// this only occurs if a developer choosed a wrong input sample-format
Log.CriticalError('TAudioInputProcessor.HandleMicrophoneData: Wrong sample-format');
Exit;
end;
// interpret buffer as buffer of bytes
SampleBuffer := Buffer;
NumSamples := Size div SizeOf(Smallint);
// boost buffer
// TODO: remove this senseless stuff - adjust the threshold instead
for i := 0 to NumSamples-1 do
begin
Value := SampleBuffer^[i] * Boost;
// TODO : JB - This will clip the audio... cant we reduce the "Boost" if the data clips ??
if Value > High(Smallint) then
Value := High(Smallint);
if Value < Low(Smallint) then
Value := Low(Smallint);
SampleBuffer^[i] := Value;
end;
// samples per channel
FrameSize := AudioFormat.Channels * SizeOf(SmallInt);
NumFrames := Size div FrameSize;
// process channels
for ChannelIndex := 0 to High(InputDevice.CaptureChannel) do
begin
CaptureChannel := InputDevice.CaptureChannel[ChannelIndex];
if (CaptureChannel <> nil) then
begin
// set offset according to channel index
ChannelBuffer := @PChar(Buffer)[ChannelIndex * SizeOf(SmallInt)];
// TODO: remove BufferNew and write to BufferArray directly
CaptureChannel.BufferNew.Clear;
for i := 0 to NumFrames-1 do
begin
CaptureChannel.BufferNew.Write(ChannelBuffer[i*FrameSize], SizeOf(SmallInt));
end;
CaptureChannel.ProcessNewBuffer();
end;
end;
end;
{ TAudioInputBase }
{*
* Start capturing on all used input-device.
*}
procedure TAudioInputBase.CaptureStart;
var
S: integer;
DeviceIndex: integer;
ChannelIndex: integer;
Device: TAudioInputDevice;
DeviceCfg: PInputDeviceConfig;
DeviceUsed: boolean;
Player: integer;
begin
if (Started) then
CaptureStop();
// reset buffers
for S := 0 to High(AudioInputProcessor.Sound) do
AudioInputProcessor.Sound[S].Clear;
// start capturing on each used device
for DeviceIndex := 0 to High(AudioInputProcessor.Device) do
begin
Device := AudioInputProcessor.Device[DeviceIndex];
if not assigned(Device) then
continue;
DeviceCfg := @Ini.InputDeviceConfig[Device.CfgIndex];
DeviceUsed := false;
// check if device is used
for ChannelIndex := 0 to High(DeviceCfg.ChannelToPlayerMap) do
begin
Player := DeviceCfg.ChannelToPlayerMap[ChannelIndex]-1;
if (Player < 0) or (Player >= PlayersPlay) then
begin
Device.LinkCaptureBuffer(ChannelIndex, nil);
end
else
begin
Device.LinkCaptureBuffer(ChannelIndex, AudioInputProcessor.Sound[Player]);
DeviceUsed := true;
end;
end;
// start device if used
if (DeviceUsed) then
begin
//Log.BenchmarkStart(2);
Device.Start();
//Log.BenchmarkEnd(2);
//Log.LogBenchmark('Device.Start', 2) ;
end;
end;
Started := true;
end;
{*
* Stop input-capturing on all soundcards.
*}
procedure TAudioInputBase.CaptureStop;
var
DeviceIndex: integer;
Player: integer;
Device: TAudioInputDevice;
DeviceCfg: PInputDeviceConfig;
begin
for DeviceIndex := 0 to High(AudioInputProcessor.Device) do
begin
Device := AudioInputProcessor.Device[DeviceIndex];
if not assigned(Device) then
continue;
Device.Stop();
end;
Started := false;
end;
function TAudioInputBase.UnifyDeviceName(const name: string; deviceIndex: integer): string;
var
count: integer; // count of devices with this name
function IsDuplicate(const name: string): boolean;
var
i: integer;
begin
Result := False;
// search devices with same description
For i := 0 to deviceIndex-1 do
begin
if (AudioInputProcessor.Device[i].Description = name) then
begin
Result := True;
Break;
end;
end;
end;
begin
count := 1;
result := name;
// if there is another device with the same ID, search for an available name
while (IsDuplicate(result)) do
begin
Inc(count);
// set description
result := name + ' ('+IntToStr(count)+')';
end;
end;
{*
* Unifies an input-device's source name.
* Note: the description member of the device must already be set when
* calling this function.
*}
function TAudioInputBase.UnifyDeviceSourceName(const name: string; const deviceName: string): string;
var
Descr: string;
begin
result := name;
{$IFDEF DARWIN}
// Under MacOSX the SingStar Mics have an empty
// InputName. So, we have to add a hard coded
// Workaround for this problem
if (name = '') and (Pos( 'USBMIC Serial#', deviceName) > 0) then
begin
result := 'Microphone';
end;
{$ENDIF}
end;
end.
|