1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
|
unit URecord;
interface
{$IFDEF FPC}
{$MODE Delphi}
{$ENDIF}
{$I switches.inc}
uses Classes,
Math,
SysUtils,
UCommon,
UMusic,
UIni;
type
TSound = class
private
BufferNew: TMemoryStream; // buffer for newest samples
public
BufferArray: array[0..4095] of smallint; // newest 4096 samples
BufferLong: array of TMemoryStream; // full buffer
Index: integer; // index in TAudioInputProcessor.Sound[] (TODO: Remove if not used)
AnalysisBufferSize: integer; // number of samples to analyze
// pitch detection
ToneValid: boolean; // true if Tone contains a valid value (otherwise it contains noise)
//Peak: integer; // position of peak on horizontal pivot (TODO: Remove if not used)
//ToneAccuracy: real; // tone accuracy (TODO: Remove if not used)
Tone: integer; // TODO: should be a non-unified full range tone (e.g. C2<>C3). Range: 0..NumHalftones-1
// Note: at the moment it is the same as ToneUnified
ToneUnified: integer; // tone unified to one octave (e.g. C2=C3=C4). Range: 0-11
//Scale: real; // FFT scale (TODO: Remove if not used)
// procedures
procedure ProcessNewBuffer;
procedure AnalyzeBuffer; // use to analyze sound from buffers to get new pitch
procedure AnalyzeByAutocorrelation; // we call it to analyze sound by checking Autocorrelation
function AnalyzeAutocorrelationFreq(Freq: real): real; // use this to check one frequency by Autocorrelation
end;
TAudioInputDeviceSource = record
Name: string;
end;
// soundcard input-devices information
TAudioInputDevice = class
public
CfgIndex: integer; // index of this device in Ini.InputDeviceConfig
Description: string; // soundcard name/description
Source: array of TAudioInputDeviceSource; // soundcard input(-source)s
SourceSelected: integer; // unused. What is this good for?
MicInput: integer; // unused. What is this good for?
SampleRate: integer; // capture sample-rate (e.g. 44.1kHz -> 44100)
CaptureChannel: array[0..1] of TSound; // sound(-buffers) used for left/right channel's capture data
procedure Start(); virtual; abstract;
procedure Stop(); virtual; abstract;
destructor Destroy; override;
end;
TAudioInputProcessor = class
Sound: array of TSound;
Device: array of TAudioInputDevice;
constructor Create;
// handle microphone input
procedure HandleMicrophoneData(Buffer: Pointer; Size: Cardinal;
InputDevice: TAudioInputDevice);
function Volume( aChannel : byte ): byte;
end;
TAudioInputBase = class( TInterfacedObject, IAudioInput )
private
Started: boolean;
protected
function UnifyDeviceName(const name: string; deviceIndex: integer): string;
function UnifyDeviceSourceName(const name: string; const deviceName: string): string;
public
function GetName: String; virtual; abstract;
function InitializeRecord: boolean; virtual; abstract;
procedure CaptureStart;
procedure CaptureStop;
end;
SmallIntArray = array [0..maxInt shr 1-1] of smallInt;
PSmallIntArray = ^SmallIntArray;
function AudioInputProcessor(): TAudioInputProcessor;
implementation
uses
ULog,
UMain;
const
CaptureFreq = 44100;
BaseToneFreq = 65.4064; // lowest (half-)tone to analyze (C2 = 65.4064 Hz)
NumHalftones = 36; // C2-B4 (for Whitney and my high voice)
var
singleton_AudioInputProcessor : TAudioInputProcessor = nil;
// FIXME: Race-Conditions between Callback-thread and main-thread
// on BufferArray (maybe BufferNew also).
// Use SDL-mutexes to solve this problem.
{ Global }
function AudioInputProcessor(): TAudioInputProcessor;
begin
if singleton_AudioInputProcessor = nil then
singleton_AudioInputProcessor := TAudioInputProcessor.create();
result := singleton_AudioInputProcessor;
end;
{ TAudioInputDevice }
destructor TAudioInputDevice.Destroy;
var
i: integer;
begin
Stop();
Source := nil;
for i := 0 to High(CaptureChannel) do
CaptureChannel[i] := nil;
inherited Destroy;
end;
{ TSound }
procedure TSound.ProcessNewBuffer;
var
SkipCount: integer;
NumSamples: integer;
SampleIndex: integer;
begin
// process BufferArray
SkipCount := 0;
NumSamples := BufferNew.Size div 2;
// check if we have more new samples than we can store
if NumSamples > Length(BufferArray) then
begin
// discard the oldest of the new samples
SkipCount := NumSamples - Length(BufferArray);
NumSamples := Length(BufferArray);
end;
// move old samples to the beginning of the array (if necessary)
for SampleIndex := NumSamples to High(BufferArray) do
BufferArray[SampleIndex-NumSamples] := BufferArray[SampleIndex];
// skip samples if necessary
BufferNew.Seek(2*SkipCount, soBeginning);
// copy samples
BufferNew.ReadBuffer(BufferArray[Length(BufferArray)-NumSamples], 2*NumSamples);
// save capture-data to BufferLong if neccessary
if Ini.SavePlayback = 1 then
begin
BufferNew.Seek(0, soBeginning);
BufferLong[0].CopyFrom(BufferNew, BufferNew.Size);
end;
end;
procedure TSound.AnalyzeBuffer;
begin
AnalyzeByAutocorrelation;
end;
procedure TSound.AnalyzeByAutocorrelation;
var
ToneIndex: integer;
Freq: real;
Wages: array[0..NumHalftones-1] of real;
MaxTone: integer;
MaxWage: real;
Volume: real;
MaxVolume: real;
SampleIndex: integer;
Threshold: real;
const
HalftoneBase = 1.05946309436; // 2^(1/12) -> HalftoneBase^12 = 2 (one octave)
begin
ToneValid := false;
// find maximum volume of first 1024 samples
MaxVolume := 0;
for SampleIndex := 0 to 1023 do
begin
Volume := Abs(BufferArray[SampleIndex]) /
-Low(Smallint); // was $10000 (65536) before but must be 32768
if Volume > MaxVolume then
MaxVolume := Volume;
end;
// prepare to analyze
MaxWage := 0;
// analyze halftones
for ToneIndex := 0 to NumHalftones-1 do
begin
Freq := BaseToneFreq * Power(HalftoneBase, ToneIndex);
Wages[ToneIndex] := AnalyzeAutocorrelationFreq(Freq);
if Wages[ToneIndex] > MaxWage then
begin
// this frequency has better wage
MaxWage := Wages[ToneIndex];
MaxTone := ToneIndex;
end;
end;
Threshold := 0.2;
case Ini.Threshold of
0: Threshold := 0.1;
1: Threshold := 0.2;
2: Threshold := 0.3;
3: Threshold := 0.4;
end;
// check if signal has an acceptable volume (ignore background-noise)
if MaxVolume >= Threshold then
begin
ToneValid := true;
ToneUnified := MaxTone mod 12;
Tone := MaxTone mod 12;
end;
end;
function TSound.AnalyzeAutocorrelationFreq(Freq: real): real; // result medium difference
var
Dist: real; // distance (0=equal .. 1=totally different) between correlated samples
AccumDist: real; // accumulated distances
SampleIndex: integer; // index of sample to analyze
CorrelatingSampleIndex: integer; // index of sample one period ahead
SamplesPerPeriod: integer; // samples in one period
begin
SampleIndex := 0;
SamplesPerPeriod := Round(CaptureFreq/Freq);
CorrelatingSampleIndex := SampleIndex + SamplesPerPeriod;
AccumDist := 0;
// compare correlating samples
while (CorrelatingSampleIndex < AnalysisBufferSize) do
begin
// calc distance (correlation: 1-dist) to corresponding sample in next period
Dist := Abs(BufferArray[SampleIndex] - BufferArray[CorrelatingSampleIndex]) /
High(Word); // was $10000 (65536) before but must be 65535
AccumDist := AccumDist + Dist;
Inc(SampleIndex);
Inc(CorrelatingSampleIndex);
end;
// return "inverse" average distance (=correlation)
Result := 1 - AccumDist / AnalysisBufferSize;
end;
{ TAudioInputProcessor }
{*
* Handle captured microphone input data.
* Params:
* Buffer - buffer of signed 16bit interleaved stereo PCM-samples.
* Interleaved means that a right-channel sample follows a left-
* channel sample and vice versa (0:left[0],1:right[0],2:left[1],...).
* Length - number of bytes in Buffer
* Input - Soundcard-Input used for capture
*}
procedure TAudioInputProcessor.HandleMicrophoneData(Buffer: Pointer; Size: Cardinal; InputDevice: TAudioInputDevice);
var
NumSamples: integer; // number of samples
SampleIndex: integer;
Value: integer;
ByteBuffer: PByteArray; // buffer handled as array of bytes
SampleBuffer: PSmallIntArray; // buffer handled as array of samples
Offset: integer;
Boost: byte;
ChannelCount: integer;
ChannelIndex: integer;
CaptureChannel: TSound;
SampleSize: integer;
begin
// set boost
case Ini.MicBoost of
0: Boost := 1;
1: Boost := 2;
2: Boost := 4;
3: Boost := 8;
end;
// boost buffer
NumSamples := Size div 2;
SampleBuffer := Buffer;
for SampleIndex := 0 to NumSamples-1 do
begin
Value := SampleBuffer^[SampleIndex] * Boost;
// TODO : JB - This will clip the audio... cant we reduce the "Boost" if the data clips ??
if Value > High(Smallint) then
Value := High(Smallint);
if Value < Low(Smallint) then
Value := Low(Smallint);
SampleBuffer^[SampleIndex] := Value;
end;
// number of channels
ChannelCount := Length(InputDevice.CaptureChannel);
// size of one sample
SampleSize := ChannelCount * SizeOf(SmallInt);
// samples per channel
NumSamples := Size div SampleSize;
// interpret buffer as buffer of bytes
ByteBuffer := Buffer;
// process channels
for ChannelIndex := 0 to High(InputDevice.CaptureChannel) do
begin
CaptureChannel := InputDevice.CaptureChannel[ChannelIndex];
if (CaptureChannel <> nil) then
begin
Offset := ChannelIndex * SizeOf(SmallInt);
// TODO: remove BufferNew and write to BufferArray directly
CaptureChannel.BufferNew.Clear;
for SampleIndex := 0 to NumSamples-1 do
begin
CaptureChannel.BufferNew.Write(ByteBuffer^[Offset + SampleIndex*SampleSize],
SizeOf(SmallInt));
end;
CaptureChannel.ProcessNewBuffer();
end;
end;
end;
constructor TAudioInputProcessor.Create;
var
i: integer;
begin
SetLength(Sound, 6 {max players});//Ini.Players+1);
for i := 0 to High(Sound) do
begin
Sound[i] := TSound.Create;
Sound[i].Index := i;
Sound[i].BufferNew := TMemoryStream.Create;
SetLength(Sound[i].BufferLong, 1);
Sound[i].BufferLong[0] := TMemoryStream.Create;
Sound[i].AnalysisBufferSize := Min(4*1024, Length(Sound[i].BufferArray));
end;
end;
function TAudioInputProcessor.Volume( aChannel : byte ): byte;
var
lSampleIndex: Integer;
lMaxVol : Word;
begin;
with AudioInputProcessor.Sound[aChannel] do
begin
lMaxVol := BufferArray[0];
for lSampleIndex := 1 to High(BufferArray) do
begin
if Abs(BufferArray[lSampleIndex]) > lMaxVol then
lMaxVol := Abs(BufferArray[lSampleIndex]);
end;
end;
result := trunc( ( 255 / -Low(Smallint) ) * lMaxVol );
end;
{ TAudioInputBase }
{*
* Start capturing on all used input-device.
*}
procedure TAudioInputBase.CaptureStart;
var
S: integer;
DeviceIndex: integer;
ChannelIndex: integer;
Device: TAudioInputDevice;
DeviceCfg: PInputDeviceConfig;
DeviceUsed: boolean;
Player: integer;
begin
if (Started) then
CaptureStop();
Log.BenchmarkStart(1);
// reset buffers
for S := 0 to High(AudioInputProcessor.Sound) do
AudioInputProcessor.Sound[S].BufferLong[0].Clear;
// start capturing on each used device
for DeviceIndex := 0 to High(AudioInputProcessor.Device) do begin
Device := AudioInputProcessor.Device[DeviceIndex];
if not assigned(Device) then
continue;
DeviceCfg := @Ini.InputDeviceConfig[Device.CfgIndex];
DeviceUsed := false;
// check if device is used
for ChannelIndex := 0 to High(DeviceCfg.ChannelToPlayerMap) do
begin
Player := DeviceCfg.ChannelToPlayerMap[ChannelIndex]-1;
if (Player < 0) or (Player >= PlayersPlay) then
begin
Device.CaptureChannel[ChannelIndex] := nil;
end
else
begin
Device.CaptureChannel[ChannelIndex] := AudioInputProcessor.Sound[Player];
DeviceUsed := true;
end;
end;
// start device if used
if (DeviceUsed) then begin
Log.BenchmarkStart(2);
Device.Start();
Log.BenchmarkEnd(2);
Log.LogBenchmark('Device.Start', 2) ;
end;
end;
Log.BenchmarkEnd(1);
Log.LogBenchmark('CaptureStart', 1) ;
Started := true;
end;
{*
* Stop input-capturing on all soundcards.
*}
procedure TAudioInputBase.CaptureStop;
var
DeviceIndex: integer;
Player: integer;
Device: TAudioInputDevice;
DeviceCfg: PInputDeviceConfig;
begin
for DeviceIndex := 0 to High(AudioInputProcessor.Device) do begin
Device := AudioInputProcessor.Device[DeviceIndex];
if not assigned(Device) then
continue;
Device.Stop();
end;
Started := false;
end;
function TAudioInputBase.UnifyDeviceName(const name: string; deviceIndex: integer): string;
var
count: integer; // count of devices with this name
function IsDuplicate(const name: string): boolean;
var
i: integer;
begin
Result := False;
// search devices with same description
For i := 0 to deviceIndex-1 do
begin
if (AudioInputProcessor.Device[i].Description = name) then
begin
Result := True;
Break;
end;
end;
end;
begin
count := 1;
result := name;
// if there is another device with the same ID, search for an available name
while (IsDuplicate(result)) do
begin
Inc(count);
// set description
result := name + ' ('+IntToStr(count)+')';
end;
end;
{*
* Unifies an input-device's source name.
* Note: the description member of the device must already be set when
* calling this function.
*}
function TAudioInputBase.UnifyDeviceSourceName(const name: string; const deviceName: string): string;
var
Descr: string;
begin
result := name;
{$IFDEF DARWIN}
// Under MacOSX the SingStar Mics have an empty
// InputName. So, we have to add a hard coded
// Workaround for this problem
if (name = '') and (Pos( 'USBMIC Serial#', deviceName) > 0) then
begin
result := 'Microphone';
end;
{$ENDIF}
end;
end.
|