1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
unit URecord;
interface
{$IFDEF FPC}
{$MODE Delphi}
{$ENDIF}
{$I switches.inc}
uses Classes,
Math,
SysUtils,
UCommon,
UMusic,
UIni;
type
TSound = class
BufferNew: TMemoryStream; // buffer for newest sample
BufferArray: array[1..4096] of smallint; // (Signal) newest 4096 samples
BufferLong: array of TMemoryStream; // full buffer
Num: integer;
n: integer; // length of Signal to analyze
// pitch detection
SzczytJest: boolean; // czy jest szczyt
Szczyt: integer; // pozycja szczytu na osi poziomej
TonDokl: real; // ton aktualnego szczytu
Ton: integer; // ton bez ulamka
TonGamy: integer; // ton w gamie. wartosci: 0-11
Skala: real; // skala FFT
// procedures
procedure ProcessNewBuffer;
procedure AnalizujBufor; // use to analyze sound from buffers to get new pitch
procedure AnalizujByAutocorrelation; // we call it to analyze sound by checking Autocorrelation
function AnalyzeAutocorrelationFreq(Freq: real): real; // use this to check one frequency by Autocorrelation
end;
TSoundCardInput = record
Name: string;
end;
TGenericSoundCard = class
// here can be the soundcard information - whole database from which user will select recording source
Description: string; // soundcard name/description
Input: array of TSoundCardInput; // soundcard input(-source)s
InputSelected: integer; // unused. What is this good for?
MicInput: integer; // unused. What is this good for?
//SampleRate: integer; // TODO: for sample-rate conversion (for devices that do not support 44.1kHz)
CaptureSoundLeft: TSound; // sound(-buffer) used for left channel capture data
CaptureSoundRight: TSound; // sound(-buffer) used for right channel capture data
end;
TRecord = class
Sound: array of TSound;
SoundCard: array of TGenericSoundCard;
constructor Create;
// handle microphone input
procedure HandleMicrophoneData(Buffer: Pointer; Length: Cardinal;
InputDevice: TGenericSoundCard);
end;
smallintarray = array [0..maxInt shr 1-1] of smallInt;
psmallintarray = ^smallintarray;
var
Poz: integer;
Recording: TRecord;
implementation
uses UMain;
// FIXME: Race-Conditions between Callback-thread and main-thread
// on BufferArray (maybe BufferNew also).
// Use SDL-mutexes to solve this problem.
procedure TSound.ProcessNewBuffer;
var
S: integer;
L: integer;
A: integer;
begin
// process BufferArray
S := 0;
L := BufferNew.Size div 2;
if L > n then begin
S := L - n;
L := n;
end;
// copy to array
for A := L+1 to n do
BufferArray[A-L] := BufferArray[A];
BufferNew.Seek(2*S, soBeginning);
BufferNew.ReadBuffer(BufferArray[1+n-L], 2*L);
// process BufferLong
if Ini.SavePlayback = 1 then
begin
BufferNew.Seek(0, soBeginning);
BufferLong[0].CopyFrom(BufferNew, BufferNew.Size);
end;
end;
procedure TSound.AnalizujBufor;
begin
AnalizujByAutocorrelation;
end;
procedure TSound.AnalizujByAutocorrelation;
var
T: integer; // tone
F: real; // freq
Wages: array[0..35] of real; // wages
MaxT: integer; // max tone
MaxW: real; // max wage
V: real; // volume
MaxV: real; // max volume
S: integer; // Signal
Threshold: real; // threshold
begin
SzczytJest := false;
// find maximum volume of first 1024 words of signal
MaxV := 0;
for S := 1 to 1024 do // 0.5.2: fix. was from 0 to 1023
begin
V := Abs(BufferArray[S]) / $10000;
if V > MaxV then
MaxV := V;
end;
// prepare to analyze
MaxW := 0;
// analyze all 12 halftones
for T := 0 to 35 do // to 11, then 23, now 35 (for Whitney and my high voice)
begin
F := 130.81*Power(1.05946309436, T)/2; // let's analyze below 130.81
Wages[T] := AnalyzeAutocorrelationFreq(F);
if Wages[T] > MaxW then
begin // this frequency has better wage
MaxW := Wages[T];
MaxT := T;
end;
end; // for T
Threshold := 0.1;
case Ini.Threshold of
0: Threshold := 0.05;
1: Threshold := 0.1;
2: Threshold := 0.15;
3: Threshold := 0.2;
end;
if MaxV >= Threshold then
begin // found acceptable volume // 0.1
SzczytJest := true;
TonGamy := MaxT mod 12;
Ton := MaxT mod 12;
end;
end;
function TSound.AnalyzeAutocorrelationFreq(Freq: real): real; // result medium difference
var
Count: real;
Src: integer;
Dst: integer;
Move: integer;
Il: integer; // how many counts were done
begin
// we use Signal as source
Count := 0;
Il := 0;
Src := 1;
Move := Round(44100/Freq);
Dst := Src + Move;
// ver 2 - compare in vertical
while (Dst < n) do
begin // process up to n (4KB) of Signal
Count := Count + Abs(BufferArray[Src] - BufferArray[Dst]) / $10000;
Inc(Src);
Inc(Dst);
Inc(Il);
end;
Result := 1 - Count / Il;
end;
{*
* Handle captured microphone input data.
* Params:
* Buffer - buffer of signed 16bit interleaved stereo PCM-samples.
* Interleaved means that a right-channel sample follows a left-
* channel sample and vice versa (0:left[0],1:right[0],2:left[1],...).
* Length - number of bytes in Buffer
* Input - Soundcard-Input used for capture
*}
procedure TRecord.HandleMicrophoneData(Buffer: Pointer; Length: Cardinal;
InputDevice: TGenericSoundCard);
var
L: integer;
S: integer;
PB: pbytearray;
PSI: psmallintarray;
I: integer;
Skip: integer;
Boost: byte;
begin
// set boost
case Ini.MicBoost of
0: Boost := 1;
1: Boost := 2;
2: Boost := 4;
3: Boost := 8;
end;
// boost buffer
L := Length div 2; // number of samples
PSI := Buffer;
for S := 0 to L-1 do
begin
I := PSI^[S] * Boost;
if I > 32767 then I := 32767; // 0.5.0: limit
if I < -32768 then I := -32768; // 0.5.0: limit
PSI^[S] := I;
end;
// 2 players USB mic, left channel
if InputDevice.CaptureSoundLeft <> nil then
begin
L := Length div 4; // number of samples
PB := Buffer;
InputDevice.CaptureSoundLeft.BufferNew.Clear; // 0.5.2: problem on exiting
for S := 0 to L-1 do
begin
InputDevice.CaptureSoundLeft.BufferNew.Write(PB[S*4], 2);
end;
InputDevice.CaptureSoundLeft.ProcessNewBuffer;
end;
// 2 players USB mic, right channel
Skip := 2;
if InputDevice.CaptureSoundRight <> nil then
begin
L := Length div 4; // number of samples
PB := Buffer;
InputDevice.CaptureSoundRight.BufferNew.Clear;
for S := 0 to L-1 do
begin
InputDevice.CaptureSoundRight.BufferNew.Write(PB[Skip + S*4], 2);
end;
InputDevice.CaptureSoundRight.ProcessNewBuffer;
end;
end;
constructor TRecord.Create;
var
S: integer;
begin
SetLength(Sound, 6 {max players});//Ini.Players+1);
for S := 0 to High(Sound) do begin //Ini.Players do begin
Sound[S] := TSound.Create;
Sound[S].Num := S;
Sound[S].BufferNew := TMemoryStream.Create;
SetLength(Sound[S].BufferLong, 1);
Sound[S].BufferLong[0] := TMemoryStream.Create;
Sound[S].n := 4*1024;
end;
end;
end.
|