1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
|
unit URecord;
interface
uses Classes, Math, SysUtils, {DXSounds, Wave, }UMusic, UIni, BASS;
type
TSound = class
BufferNew: TMemoryStream; // buffer for newest sample
BufferArray: array[1..4096] of smallint; // (Signal) newest 4096 samples
BufferLong: array of TMemoryStream; // full buffer
Num: integer;
n: integer; // length of Signal to analyze
// Spectrum: array[1..8192] of single; // sound buffer from above as FFT
// Spektogram: array[0..100] of TSpekt; // FFT(t)
// pitch detection
SzczytJest: boolean; // czy jest szczyt
Szczyt: integer; // pozycja szczytu na osi poziomej
TonDokl: real; // ton aktualnego szczytu
Ton: integer; // ton bez ulamka
TonGamy: integer; // ton w gamie. wartosci: 0-11
Skala: real; // skala FFT
// procedures
procedure ProcessNewBuffer;
procedure AnalizujBufor; // use to analyze sound from buffers to get new pitch
procedure AnalizujByAutocorrelation; // we call it to analyze sound by checking Autocorrelation
function AnalyzeAutocorrelationFreq(Freq: real): real; // use this to check one frequency by Autocorrelation
end;
TSoundCardInput = record
Name: string;
end;
TSoundCard = record
// here can be the soundcard information - whole database from which user will select recording source
Description: string;
Input: array of TSoundCardInput;
InputSeleceted: integer;
// bass record
BassRecordStream: hStream;
end;
TRecord = class
SoundCard: array of TSoundCard;
constructor Create;
end;
smallintarray = array [0..maxInt shr 1-1] of smallInt;
psmallintarray = ^smallintarray;
// procedures - bass record
function GetMicrophone(handle: HSTREAM; buffer: Pointer; len: DWORD; user: DWORD): boolean; stdcall;
var
Sound: array of TSound;
SoundCard: array of TSoundCard;
Poz: integer;
Recording: TRecord;
implementation
uses UMain, ULog;
procedure TSound.ProcessNewBuffer;
var
S: integer;
L: integer;
A: integer;
begin
// process BufferArray
S := 0;
L := BufferNew.Size div 2;
if L > n then begin
S := L - n;
L := n;
end;
// copy to array
for A := L+1 to n do
BufferArray[A-L] := BufferArray[A];
BufferNew.Seek(2*S, soBeginning);
BufferNew.ReadBuffer(BufferArray[1+n-L], 2*L);
// process BufferLong
if Ini.SavePlayback = 1 then begin
BufferNew.Seek(0, soBeginning);
BufferLong[0].CopyFrom(BufferNew, BufferNew.Size);
end;
end;
procedure TSound.AnalizujBufor;
begin
AnalizujByAutocorrelation;
end;
procedure TSound.AnalizujByAutocorrelation;
var
T: integer; // tone
F: real; // freq
Wages: array[0..35] of real; // wages
MaxT: integer; // max tone
MaxW: real; // max wage
V: real; // volume
MaxV: real; // max volume
S: integer; // Signal
Threshold: real; // threshold
begin
// Log.LogAnalyze('[Analyze by Autocorrelation]');
SzczytJest := false;
// find maximum volume of first 1024 words of signal
MaxV := 0;
for S := 1 to 1024 do begin // 0.5.2: fix. was from 0 to 1023
// Log.LogDebug('1');
// Log.LogDebug(IntTostr(S));
V := Abs(BufferArray[S]) / $10000;
// Log.LogDebug('2');
// Log.LogDebug(IntTostr(S) + ': ' + FloatToStr(V) + ', MaxV='+floattostr(maxv)+', buf='+inttostr(length(BufferArray)));
if V > MaxV then MaxV := V;
// Log.LogDebug('3');
// Log.LogDebug(IntTostr(S) + ': ' + FloatToStr(V) + ', MaxV='+floattostr(maxv)+', buf='+inttostr(length(BufferArray)));
end;
// prepare to analyze
MaxW := 0;
MaxT := 0;
// analyze all 12 halftones
for T := 0 to 35 do begin // to 11, then 23, now 35 (for Whitney and my high voice)
F := 130.81*Power(1.05946309436, T)/2; // let's analyze below 130.81
Wages[T] := AnalyzeAutocorrelationFreq(F);
if Wages[T] > MaxW then begin // this frequency has better wage
MaxW := Wages[T];
MaxT := T;
end;
end; // for T
Threshold := 0.1;
case Ini.Threshold of
0: Threshold := 0.05;
1: Threshold := 0.1;
2: Threshold := 0.15;
3: Threshold := 0.2;
end;
//Log.LogDebug('Sound -> AnalyzeByAutocorrelation: MaxV='+floattostr(maxv)+', Threshold='+floattostr(threshold));
if MaxV >= Threshold then begin // found acceptable volume // 0.1
SzczytJest := true;
TonGamy := MaxT mod 12;
Ton := MaxT mod 12;
end;
// Log.LogAnalyze('--> Weight: ')
// Log.LogAnalyze('--> Selected: ' + BoolToStr(SzczytJest, true) +
// ', TonGamy: ' + IntToStr(Ton) +
// ', MaxV: ' + FloatToStr(MaxV));
// Log.LogAnalyze('');
end;
function TSound.AnalyzeAutocorrelationFreq(Freq: real): real; // result medium difference
var
Count: real;
Src: integer;
Dst: integer;
Move: integer;
Il: integer; // how many counts were done
begin
// we use Signal as source
Count := 0;
Il := 0;
Src := 1;
Move := Round(44100/Freq);
Dst := Src + Move;
// ver 1 - sample 1 and compare n-times
{ while (Src <= Move) do begin // process by moving Src by one
while (Dst < n) do begin // process up to n (4KB) of Signal
Count := Count + Abs(Signal[Src] - Signal[Dst]) / $10000;
Inc(Dst, Move);
Inc(Il);
end;
Inc(Src);
Dst := Src + Move;
end;}
// ver 2 - compare in vertical
while (Dst < n) do begin // process up to n (4KB) of Signal
Count := Count + Abs(BufferArray[Src] - BufferArray[Dst]) / $10000;
Inc(Src);
Inc(Dst);
Inc(Il);
end;
Result := 1 - Count / Il;
end;
function GetMicrophone(handle: HSTREAM; buffer: Pointer; len: DWORD; user: DWORD): boolean; stdcall;
var
L: integer;
S: integer;
PB: pbytearray;
PSI: psmallintarray;
I: integer;
Skip: integer;
P1: integer;
P2: integer;
Boost: byte;
begin
// Log.LogDebug('Record -> GetMicrophone: len='+inttstr(len));
// set boost
case Ini.MicBoost of
0: Boost := 1;
1: Boost := 2;
2: Boost := 4;
3: Boost := 8;
else Boost := 1;
end;
// boost buffer
L := Len div 2; // number of samples
PSI := Buffer;
for S := 0 to L-1 do begin
I := PSI^[S] * Boost;
if I > 32767 then I := 32767; // 0.5.0: limit
if I < -32768 then I := -32768; // 0.5.0: limit
PSI^[S] := I;
end;
// decode user
P1 := (user and 255) - 1;
P2 := (user div 256) - 1;
// Log.LogDebug('Record -> GetMicrophone: P1='+inttostr(p1)+', P2='+inttostr(p2));
// 2 players USB mic, left channel
if P1 >= 0 then begin
L := Len div 4; // number of samples
PB := Buffer;
// Log.LogDebug('Record -> GetMicrophone -> Sound[P1].BufferNew.Clear');
Sound[P1].BufferNew.Clear; // 0.5.2: problem on exiting
for S := 1 to L do begin
Sound[P1].BufferNew.Write(PB[(S-1)*4], 2);
end;
Sound[P1].ProcessNewBuffer;
end;
// 2 players USB mic, right channel
// if Ini.Debug = 0 then Skip := 2
// else Skip := 0;
Skip := 2;
if P2 >= 0 then begin
L := Len div 4; // number of samples
PB := Buffer;
Sound[P2].BufferNew.Clear;
for S := 1 to L do begin
Sound[P2].BufferNew.Write(PB[Skip + (S-1)*4], 2);
end;
Sound[P2].ProcessNewBuffer;
end;
// Log.LogDebug('Record -> GetMicrophone -> Finish');
Result := true;
end;
constructor TRecord.Create;
var
SC: integer; // soundcard
SCI: integer; // soundcard input
Descr: string;
InputName: string;
Flags: integer;
No: integer;
function isDuplicate(Desc: String): Boolean;
var
I: Integer;
begin
Result := False;
//Check for Soundcard with same Description
For I := 0 to SC-1 do
begin
if (SoundCard[I].Description = Desc) then
begin
Result := True;
Break;
end;
end;
end;
// mic: array[0..15] of integer;
begin
// checks for recording devices and puts them into array;
SetLength(SoundCard, 0);
SC := 0;
Descr := BASS_RecordGetDeviceDescription(SC);
while (Descr <> '') do begin
//If there is another SoundCard with the Same ID, Search an available Name
if (IsDuplicate(Descr)) then
begin
No:= 1; //Count of SoundCards with same Name
Repeat
Inc(No)
Until not IsDuplicate(Descr + ' (' + InttoStr(No) + ')');
//Set Description
Descr := Descr + ' (' + InttoStr(No) + ')';
end;
SetLength(SoundCard, SC+1);
// Log.LogError('Device #' + IntToStr(SC+1) + ': ' + Descr);
SoundCard[SC].Description := Descr;
// check for recording inputs
// mic[device] := -1; // default to no change
SCI := 0;
BASS_RecordInit(SC);
Flags := BASS_RecordGetInput(SCI);
InputName := BASS_RecordGetInputName(SCI);
// Log.LogError('Input #' + IntToStr(SCI) + ' (' + IntToStr(Flags) + '): ' + InputName);
SetLength(SoundCard[SC].Input, 1);
SoundCard[SC].Input[SCI].Name := InputName;
// process each input
while (Flags <> -1) do begin
if SCI >= 1 then begin
SetLength(SoundCard[SC].Input, SCI+1);
InputName := BASS_RecordGetInputName(SCI);
SoundCard[SC].Input[SCI].Name := InputName;
// Log.LogError('Input #' + IntToStr(SCI) + ' (' + IntToStr(Flags) + '): ' + InputName);
end;
{ if (flags and BASS_INPUT_TYPE_MASK) = BASS_INPUT_TYPE_MIC then begin
mic[device] := input; // auto set microphone
end;}
Inc(SCI);
Flags := BASS_RecordGetInput(SCI);
end;
{ if mic[device] <> -1 then begin
Log.LogAnalyze('Found the mic at input ' + IntToStr(Mic[device]))
end else begin
Log.LogAnalyze('Mic not found');
mic[device] := 0; // setting to the first one (for kxproject)
end;
SoundCard[SC].InputSeleceted := Mic[Device];}
BASS_RecordFree;
Inc(SC);
Descr := BASS_RecordGetDeviceDescription(SC);
end; // while
end;
end.
|