unit geometry; { $Id: geometry.pas,v 1.1 2004/03/30 21:53:54 savage Exp $ } // This unit contains many needed types, functions and procedures for // quaternion, vector and matrix arithmetics. It is specifically designed // for geometric calculations within R3 (affine vector space) // and R4 (homogeneous vector space). // // Note: The terms 'affine' or 'affine coordinates' are not really correct here // because an 'affine transformation' describes generally a transformation which leads // to a uniquely solvable system of equations and has nothing to do with the dimensionality // of a vector. One could use 'projective coordinates' but this is also not really correct // and since I haven't found a better name (or even any correct one), 'affine' is as good // as any other one. // // Identifiers containing no dimensionality (like affine or homogeneous) // and no datatype (integer..extended) are supposed as R4 representation // with 'single' floating point type (examples are TVector, TMatrix, // and TQuaternion). The default data type is 'single' ('GLFloat' for OpenGL) // and used in all routines (except conversions and trigonometric functions). // // Routines with an open array as argument can either take Func([1,2,3,4,..]) or Func(Vect). // The latter is prefered, since no extra stack operations is required. // Note: Be careful while passing open array elements! If you pass more elements // than there's room in the result the behaviour will be unpredictable. // // If not otherwise stated, all angles are given in radians // (instead of degrees). Use RadToDeg or DegToRad to convert between them. // // Geometry.pas was assembled from different sources (like GraphicGems) // and relevant books or based on self written code, respectivly. // // Note: Some aspects need to be considered when using Delphi and pure // assembler code. Delphi ensures that the direction flag is always // cleared while entering a function and expects it cleared on return. // This is in particular important in routines with (CPU) string commands (MOVSD etc.) // The registers EDI, ESI and EBX (as well as the stack management // registers EBP and ESP) must not be changed! EAX, ECX and EDX are // freely available and mostly used for parameter. // // Version 2.5 // last change : 04. January 2000 // // (c) Copyright 1999, Dipl. Ing. Mike Lischke (public@lischke-online.de) { $Log: geometry.pas,v $ Revision 1.1 2004/03/30 21:53:54 savage Moved to it's own folder. Revision 1.1 2004/02/05 00:08:19 savage Module 1.0 release } interface {$I jedi-sdl.inc} type // data types needed for 3D graphics calculation, // included are 'C like' aliases for each type (to be // conformal with OpenGL types) PByte = ^Byte; PWord = ^Word; PInteger = ^Integer; PFloat = ^Single; PDouble = ^Double; PExtended = ^Extended; PPointer = ^Pointer; // types to specify continous streams of a specific type // switch off range checking to access values beyond the limits PByteVector = ^TByteVector; PByteArray = PByteVector; TByteVector = array[0..0] of Byte; PWordVector = ^TWordVector; PWordArray = PWordVector; // note: there's a same named type in SysUtils TWordVector = array[0..0] of Word; PIntegerVector = ^TIntegerVector; PIntegerArray = PIntegerVector; TIntegerVector = array[0..0] of Integer; PFloatVector = ^TFloatVector; PFloatArray = PFloatVector; TFloatVector = array[0..0] of Single; PDoubleVector = ^TDoubleVector; PDoubleArray = PDoubleVector; TDoubleVector = array[0..0] of Double; PExtendedVector = ^TExtendedVector; PExtendedArray = PExtendedVector; TExtendedVector = array[0..0] of Extended; PPointerVector = ^TPointerVector; PPointerArray = PPointerVector; TPointerVector = array[0..0] of Pointer; PCardinalVector = ^TCardinalVector; PCardinalArray = PCardinalVector; TCardinalVector = array[0..0] of Cardinal; // common vector and matrix types with predefined limits // indices correspond like: x -> 0 // y -> 1 // z -> 2 // w -> 3 PHomogeneousByteVector = ^THomogeneousByteVector; THomogeneousByteVector = array[0..3] of Byte; TVector4b = THomogeneousByteVector; PHomogeneousWordVector = ^THomogeneousWordVector; THomogeneousWordVector = array[0..3] of Word; TVector4w = THomogeneousWordVector; PHomogeneousIntVector = ^THomogeneousIntVector; THomogeneousIntVector = array[0..3] of Integer; TVector4i = THomogeneousIntVector; PHomogeneousFltVector = ^THomogeneousFltVector; THomogeneousFltVector = array[0..3] of Single; TVector4f = THomogeneousFltVector; PHomogeneousDblVector = ^THomogeneousDblVector; THomogeneousDblVector = array[0..3] of Double; TVector4d = THomogeneousDblVector; PHomogeneousExtVector = ^THomogeneousExtVector; THomogeneousExtVector = array[0..3] of Extended; TVector4e = THomogeneousExtVector; PHomogeneousPtrVector = ^THomogeneousPtrVector; THomogeneousPtrVector = array[0..3] of Pointer; TVector4p = THomogeneousPtrVector; PAffineByteVector = ^TAffineByteVector; TAffineByteVector = array[0..2] of Byte; TVector3b = TAffineByteVector; PAffineWordVector = ^TAffineWordVector; TAffineWordVector = array[0..2] of Word; TVector3w = TAffineWordVector; PAffineIntVector = ^TAffineIntVector; TAffineIntVector = array[0..2] of Integer; TVector3i = TAffineIntVector; PAffineFltVector = ^TAffineFltVector; TAffineFltVector = array[0..2] of Single; TVector3f = TAffineFltVector; PAffineDblVector = ^TAffineDblVector; TAffineDblVector = array[0..2] of Double; TVector3d = TAffineDblVector; PAffineExtVector = ^TAffineExtVector; TAffineExtVector = array[0..2] of Extended; TVector3e = TAffineExtVector; PAffinePtrVector = ^TAffinePtrVector; TAffinePtrVector = array[0..2] of Pointer; TVector3p = TAffinePtrVector; // some simplified names PVector = ^TVector; TVector = THomogeneousFltVector; PHomogeneousVector = ^THomogeneousVector; THomogeneousVector = THomogeneousFltVector; PAffineVector = ^TAffineVector; TAffineVector = TAffineFltVector; // arrays of vectors PVectorArray = ^TVectorArray; TVectorArray = array[0..0] of TAffineVector; // matrices THomogeneousByteMatrix = array[0..3] of THomogeneousByteVector; TMatrix4b = THomogeneousByteMatrix; THomogeneousWordMatrix = array[0..3] of THomogeneousWordVector; TMatrix4w = THomogeneousWordMatrix; THomogeneousIntMatrix = array[0..3] of THomogeneousIntVector; TMatrix4i = THomogeneousIntMatrix; THomogeneousFltMatrix = array[0..3] of THomogeneousFltVector; TMatrix4f = THomogeneousFltMatrix; THomogeneousDblMatrix = array[0..3] of THomogeneousDblVector; TMatrix4d = THomogeneousDblMatrix; THomogeneousExtMatrix = array[0..3] of THomogeneousExtVector; TMatrix4e = THomogeneousExtMatrix; TAffineByteMatrix = array[0..2] of TAffineByteVector; TMatrix3b = TAffineByteMatrix; TAffineWordMatrix = array[0..2] of TAffineWordVector; TMatrix3w = TAffineWordMatrix; TAffineIntMatrix = array[0..2] of TAffineIntVector; TMatrix3i = TAffineIntMatrix; TAffineFltMatrix = array[0..2] of TAffineFltVector; TMatrix3f = TAffineFltMatrix; TAffineDblMatrix = array[0..2] of TAffineDblVector; TMatrix3d = TAffineDblMatrix; TAffineExtMatrix = array[0..2] of TAffineExtVector; TMatrix3e = TAffineExtMatrix; // some simplified names PMatrix = ^TMatrix; TMatrix = THomogeneousFltMatrix; PHomogeneousMatrix = ^THomogeneousMatrix; THomogeneousMatrix = THomogeneousFltMatrix; PAffineMatrix = ^TAffineMatrix; TAffineMatrix = TAffineFltMatrix; // q = ([x, y, z], w) TQuaternion = record case Integer of 0: (ImagPart: TAffineVector; RealPart: Single); 1: (Vector: TVector4f); end; TRectangle = record Left, Top, Width, Height: Integer; end; TTransType = (ttScaleX, ttScaleY, ttScaleZ, ttShearXY, ttShearXZ, ttShearYZ, ttRotateX, ttRotateY, ttRotateZ, ttTranslateX, ttTranslateY, ttTranslateZ, ttPerspectiveX, ttPerspectiveY, ttPerspectiveZ, ttPerspectiveW); // used to describe a sequence of transformations in following order: // [Sx][Sy][Sz][ShearXY][ShearXZ][ShearZY][Rx][Ry][Rz][Tx][Ty][Tz][P(x,y,z,w)] // constants are declared for easier access (see MatrixDecompose below) TTransformations = array[TTransType] of Single; const // useful constants // standard vectors XVector: TAffineVector = (1, 0, 0); YVector: TAffineVector = (0, 1, 0); ZVector: TAffineVector = (0, 0, 1); NullVector: TAffineVector = (0, 0, 0); IdentityMatrix: TMatrix = ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)); EmptyMatrix: TMatrix = ((0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)); // some very small numbers EPSILON = 1e-100; EPSILON2 = 1e-50; //---------------------------------------------------------------------------------------------------------------------- // vector functions function VectorAdd(V1, V2: TVector): TVector; function VectorAffineAdd(V1, V2: TAffineVector): TAffineVector; function VectorAffineCombine(V1, V2: TAffineVector; F1, F2: Single): TAffineVector; function VectorAffineDotProduct(V1, V2: TAffineVector): Single; function VectorAffineLerp(V1, V2: TAffineVector; t: Single): TAffineVector; function VectorAffineSubtract(V1, V2: TAffineVector): TAffineVector; function VectorAngle(V1, V2: TAffineVector): Single; function VectorCombine(V1, V2: TVector; F1, F2: Single): TVector; function VectorCrossProduct(V1, V2: TAffineVector): TAffineVector; function VectorDotProduct(V1, V2: TVector): Single; function VectorLength(V: array of Single): Single; function VectorLerp(V1, V2: TVector; t: Single): TVector; procedure VectorNegate(V: array of Single); function VectorNorm(V: array of Single): Single; function VectorNormalize(V: array of Single): Single; function VectorPerpendicular(V, N: TAffineVector): TAffineVector; function VectorReflect(V, N: TAffineVector): TAffineVector; procedure VectorRotate(var Vector: TVector4f; Axis: TVector3f; Angle: Single); procedure VectorScale(V: array of Single; Factor: Single); function VectorSubtract(V1, V2: TVector): TVector; // matrix functions function CreateRotationMatrixX(Sine, Cosine: Single): TMatrix; function CreateRotationMatrixY(Sine, Cosine: Single): TMatrix; function CreateRotationMatrixZ(Sine, Cosine: Single): TMatrix; function CreateScaleMatrix(V: TAffineVector): TMatrix; function CreateTranslationMatrix(V: TVector): TMatrix; procedure MatrixAdjoint(var M: TMatrix); function MatrixAffineDeterminant(M: TAffineMatrix): Single; procedure MatrixAffineTranspose(var M: TAffineMatrix); function MatrixDeterminant(M: TMatrix): Single; procedure MatrixInvert(var M: TMatrix); function MatrixMultiply(M1, M2: TMatrix): TMatrix; procedure MatrixScale(var M: TMatrix; Factor: Single); procedure MatrixTranspose(var M: TMatrix); // quaternion functions function QuaternionConjugate(Q: TQuaternion): TQuaternion; function QuaternionFromPoints(V1, V2: TAffineVector): TQuaternion; function QuaternionMultiply(qL, qR: TQuaternion): TQuaternion; function QuaternionSlerp(QStart, QEnd: TQuaternion; Spin: Integer; t: Single): TQuaternion; function QuaternionToMatrix(Q: TQuaternion): TMatrix; procedure QuaternionToPoints(Q: TQuaternion; var ArcFrom, ArcTo: TAffineVector); // mixed functions function ConvertRotation(Angles: TAffineVector): TVector; function CreateRotationMatrix(Axis: TVector3f; Angle: Single): TMatrix; function MatrixDecompose(M: TMatrix; var Tran: TTransformations): Boolean; function VectorAffineTransform(V: TAffineVector; M: TAffineMatrix): TAffineVector; function VectorTransform(V: TVector4f; M: TMatrix): TVector4f; overload; function VectorTransform(V: TVector3f; M: TMatrix): TVector3f; overload; // miscellaneous functions function MakeAffineDblVector(V: array of Double): TAffineDblVector; function MakeDblVector(V: array of Double): THomogeneousDblVector; function MakeAffineVector(V: array of Single): TAffineVector; function MakeQuaternion(Imag: array of Single; Real: Single): TQuaternion; function MakeVector(V: array of Single): TVector; function PointInPolygon(xp, yp : array of Single; x, y: Single): Boolean; function VectorAffineDblToFlt(V: TAffineDblVector): TAffineVector; function VectorDblToFlt(V: THomogeneousDblVector): THomogeneousVector; function VectorAffineFltToDbl(V: TAffineVector): TAffineDblVector; function VectorFltToDbl(V: TVector): THomogeneousDblVector; // trigonometric functions function ArcCos(X: Extended): Extended; function ArcSin(X: Extended): Extended; function ArcTan2(Y, X: Extended): Extended; function CoTan(X: Extended): Extended; function DegToRad(Degrees: Extended): Extended; function RadToDeg(Radians: Extended): Extended; procedure SinCos(Theta: Extended; var Sin, Cos: Extended); function Tan(X: Extended): Extended; // coordinate system manipulation functions function Turn(Matrix: TMatrix; Angle: Single): TMatrix; overload; function Turn(Matrix: TMatrix; MasterUp: TAffineVector; Angle: Single): TMatrix; overload; function Pitch(Matrix: TMatrix; Angle: Single): TMatrix; overload; function Pitch(Matrix: TMatrix; MasterRight: TAffineVector; Angle: Single): TMatrix; overload; function Roll(Matrix: TMatrix; Angle: Single): TMatrix; overload; function Roll(Matrix: TMatrix; MasterDirection: TAffineVector; Angle: Single): TMatrix; overload; //---------------------------------------------------------------------------------------------------------------------- implementation const // FPU status flags (high order byte) C0 = 1; C1 = 2; C2 = 4; C3 = $40; // to be used as descriptive indices X = 0; Y = 1; Z = 2; W = 3; //----------------- trigonometric helper functions --------------------------------------------------------------------- function DegToRad(Degrees: Extended): Extended; begin Result := Degrees * (PI / 180); end; //---------------------------------------------------------------------------------------------------------------------- function RadToDeg(Radians: Extended): Extended; begin Result := Radians * (180 / PI); end; //---------------------------------------------------------------------------------------------------------------------- procedure SinCos(Theta: Extended; var Sin, Cos: Extended); assembler; register; // calculates sine and cosine from the given angle Theta // EAX contains address of Sin // EDX contains address of Cos // Theta is passed over the stack asm FLD Theta FSINCOS FSTP TBYTE PTR [EDX] // cosine FSTP TBYTE PTR [EAX] // sine FWAIT end; //---------------------------------------------------------------------------------------------------------------------- function ArcCos(X: Extended): Extended; begin Result := ArcTan2(Sqrt(1 - X * X), X); end; //---------------------------------------------------------------------------------------------------------------------- function ArcSin(X: Extended): Extended; begin Result := ArcTan2(X, Sqrt(1 - X * X)) end; //---------------------------------------------------------------------------------------------------------------------- function ArcTan2(Y, X: Extended): Extended; asm FLD Y FLD X FPATAN FWAIT end; //---------------------------------------------------------------------------------------------------------------------- function Tan(X: Extended): Extended; asm FLD X FPTAN FSTP ST(0) // FPTAN pushes 1.0 after result FWAIT end; //---------------------------------------------------------------------------------------------------------------------- function CoTan(X: Extended): Extended; asm FLD X FPTAN FDIVRP FWAIT end; //----------------- miscellaneous vector functions --------------------------------------------------------------------- function MakeAffineDblVector(V: array of Double): TAffineDblVector; assembler; // creates a vector from given values // EAX contains address of V // ECX contains address to result vector // EDX contains highest index of V asm PUSH EDI PUSH ESI MOV EDI, ECX MOV ESI, EAX MOV ECX, EDX ADD ECX, 2 REP MOVSD POP ESI POP EDI end; //---------------------------------------------------------------------------------------------------------------------- function MakeDblVector(V: array of Double): THomogeneousDblVector; assembler; // creates a vector from given values // EAX contains address of V // ECX contains address to result vector // EDX contains highest index of V asm PUSH EDI PUSH ESI MOV EDI, ECX MOV ESI, EAX MOV ECX, EDX ADD ECX, 2 REP MOVSD POP ESI POP EDI end; //---------------------------------------------------------------------------------------------------------------------- function MakeAffineVector(V: array of Single): TAffineVector; assembler; // creates a vector from given values // EAX contains address of V // ECX contains address to result vector // EDX contains highest index of V asm PUSH EDI PUSH ESI MOV EDI, ECX MOV ESI, EAX MOV ECX, EDX INC ECX CMP ECX, 3 JB @@1 MOV ECX, 3 @@1: REP MOVSD // copy given values MOV ECX, 2 SUB ECX, EDX // determine missing entries JS @@Finish XOR EAX, EAX REP STOSD // set remaining fields to 0 @@Finish: POP ESI POP EDI end; //---------------------------------------------------------------------------------------------------------------------- function MakeQuaternion(Imag: array of Single; Real: Single): TQuaternion; assembler; // creates a quaternion from the given values // EAX contains address of Imag // ECX contains address to result vector // EDX contains highest index of Imag // Real part is passed on the stack asm PUSH EDI PUSH ESI MOV EDI, ECX MOV ESI, EAX MOV ECX, EDX INC ECX REP MOVSD MOV EAX, [Real] MOV [EDI], EAX POP ESI POP EDI end; //---------------------------------------------------------------------------------------------------------------------- function MakeVector(V: array of Single): TVector; assembler; // creates a vector from given values // EAX contains address of V // ECX contains address to result vector // EDX contains highest index of V asm PUSH EDI PUSH ESI MOV EDI, ECX MOV ESI, EAX MOV ECX, EDX INC ECX CMP ECX, 4 JB @@1 MOV ECX, 4 @@1: REP MOVSD // copy given values MOV ECX, 3 SUB ECX, EDX // determine missing entries JS @@Finish XOR EAX, EAX REP STOSD // set remaining fields to 0 @@Finish: POP ESI POP EDI end; //---------------------------------------------------------------------------------------------------------------------- function VectorLength(V: array of Single): Single; assembler; // calculates the length of a vector following the equation: sqrt(x * x + y * y + ...) // Note: The parameter of this function is declared as open array. Thus // there's no restriction about the number of the components of the vector. // // EAX contains address of V // EDX contains the highest index of V // the result is returned in ST(0) asm FLDZ // initialize sum @@Loop: FLD DWORD PTR [EAX + 4 * EDX] // load a component FMUL ST, ST FADDP SUB EDX, 1 JNL @@Loop FSQRT end; //---------------------------------------------------------------------------------------------------------------------- function VectorAngle(V1, V2: TAffineVector): Single; assembler; // calculates the cosine of the angle between Vector1 and Vector2 // Result = DotProduct(V1, V2) / (Length(V1) * Length(V2)) // // EAX contains address of Vector1 // EDX contains address of Vector2 asm FLD DWORD PTR [EAX] // V1[0] FLD ST // double V1[0] FMUL ST, ST // V1[0]^2 (prep. for divisor) FLD DWORD PTR [EDX] // V2[0] FMUL ST(2), ST // ST(2) := V1[0] * V2[0] FMUL ST, ST // V2[0]^2 (prep. for divisor) FLD DWORD PTR [EAX + 4] // V1[1] FLD ST // double V1[1] FMUL ST, ST // ST(0) := V1[1]^2 FADDP ST(3), ST // ST(2) := V1[0]^2 + V1[1] * * 2 FLD DWORD PTR [EDX + 4] // V2[1] FMUL ST(1), ST // ST(1) := V1[1] * V2[1] FMUL ST, ST // ST(0) := V2[1]^2 FADDP ST(2), ST // ST(1) := V2[0]^2 + V2[1]^2 FADDP ST(3), ST // ST(2) := V1[0] * V2[0] + V1[1] * V2[1] FLD DWORD PTR [EAX + 8] // load V2[1] FLD ST // same calcs go here FMUL ST, ST // (compare above) FADDP ST(3), ST FLD DWORD PTR [EDX + 8] FMUL ST(1), ST FMUL ST, ST FADDP ST(2), ST FADDP ST(3), ST FMULP // ST(0) := (V1[0]^2 + V1[1]^2 + V1[2]) * // (V2[0]^2 + V2[1]^2 + V2[2]) FSQRT // sqrt(ST(0)) FDIVP // ST(0) := Result := ST(1) / ST(0) // the result is expected in ST(0), if it's invalid, an error is raised end; //---------------------------------------------------------------------------------------------------------------------- function VectorNorm(V: array of Single): Single; assembler; register; // calculates norm of a vector which is defined as norm = x * x + y * y + ... // EAX contains address of V // EDX contains highest index in V // result is passed in ST(0) asm FLDZ // initialize sum @@Loop: FLD DWORD PTR [EAX + 4 * EDX] // load a component FMUL ST, ST // make square FADDP // add previous calculated sum SUB EDX, 1 JNL @@Loop end; //---------------------------------------------------------------------------------------------------------------------- function VectorNormalize(V: array of Single): Single; assembler; register; // transforms a vector to unit length and return length // EAX contains address of V // EDX contains the highest index in V // return former length of V in ST asm PUSH EBX MOV ECX, EDX // save size of V CALL VectorLength // calculate length of vector FTST // test if length = 0 MOV EBX, EAX // save parameter address FSTSW AX // get test result TEST AH, C3 // check the test result JNZ @@Finish SUB EBX, 4 // simplyfied address calculation INC ECX FLD1 // calculate reciprocal of length FDIV ST, ST(1) @@1: FLD ST // double reciprocal FMUL DWORD PTR [EBX + 4 * ECX] // scale component WAIT FSTP DWORD PTR [EBX + 4 * ECX] // store result LOOP @@1 FSTP ST // remove reciprocal from FPU stack @@Finish: POP EBX end; //---------------------------------------------------------------------------------------------------------------------- function VectorAffineSubtract(V1, V2: TAffineVector): TAffineVector; assembler; register; // returns v1 minus v2 // EAX contains address of V1 // EDX contains address of V2 // ECX contains address of the result asm {Result[X] := V1[X]-V2[X]; Result[Y] := V1[Y]-V2[Y]; Result[Z] := V1[Z]-V2[Z];} FLD DWORD PTR [EAX] FSUB DWORD PTR [EDX] FSTP DWORD PTR [ECX] FLD DWORD PTR [EAX + 4] FSUB DWORD PTR [EDX + 4] FSTP DWORD PTR [ECX + 4] FLD DWORD PTR [EAX + 8] FSUB DWORD PTR [EDX + 8] FSTP DWORD PTR [ECX + 8] end; //---------------------------------------------------------------------------------------------------------------------- function VectorReflect(V, N: TAffineVector): TAffineVector; assembler; register; // reflects vector V against N (assumes N is normalized) // EAX contains address of V // EDX contains address of N // ECX contains address of the result //var Dot : Single; asm {Dot := VectorAffineDotProduct(V, N); Result[X] := V[X]-2 * Dot * N[X]; Result[Y] := V[Y]-2 * Dot * N[Y]; Result[Z] := V[Z]-2 * Dot * N[Z];} CALL VectorAffineDotProduct // dot is now in ST(0) FCHS // -dot FADD ST, ST // -dot * 2 FLD DWORD PTR [EDX] // ST := N[X] FMUL ST, ST(1) // ST := -2 * dot * N[X] FADD DWORD PTR[EAX] // ST := V[X] - 2 * dot * N[X] FSTP DWORD PTR [ECX] // store result FLD DWORD PTR [EDX + 4] // etc. FMUL ST, ST(1) FADD DWORD PTR[EAX + 4] FSTP DWORD PTR [ECX + 4] FLD DWORD PTR [EDX + 8] FMUL ST, ST(1) FADD DWORD PTR[EAX + 8] FSTP DWORD PTR [ECX + 8] FSTP ST // clean FPU stack end; //---------------------------------------------------------------------------------------------------------------------- procedure VectorRotate(var Vector: TVector4f; Axis: TVector3f; Angle: Single); // rotates Vector about Axis with Angle radiants var RotMatrix : TMatrix4f; begin RotMatrix := CreateRotationMatrix(Axis, Angle); Vector := VectorTransform(Vector, RotMatrix); end; //---------------------------------------------------------------------------------------------------------------------- procedure VectorScale(V: array of Single; Factor: Single); assembler; register; // returns a vector scaled by a factor // EAX contains address of V // EDX contains highest index in V // Factor is located on the stack asm {for I := Low(V) to High(V) do V[I] := V[I] * Factor;} FLD DWORD PTR [Factor] // load factor @@Loop: FLD DWORD PTR [EAX + 4 * EDX] // load a component FMUL ST, ST(1) // multiply it with the factor WAIT FSTP DWORD PTR [EAX + 4 * EDX] // store the result DEC EDX // do the entire array JNS @@Loop FSTP ST(0) // clean the FPU stack end; //---------------------------------------------------------------------------------------------------------------------- procedure VectorNegate(V: array of Single); assembler; register; // returns a negated vector // EAX contains address of V // EDX contains highest index in V asm {V[X] := -V[X]; V[Y] := -V[Y]; V[Z] := -V[Z];} @@Loop: FLD DWORD PTR [EAX + 4 * EDX] FCHS WAIT FSTP DWORD PTR [EAX + 4 * EDX] DEC EDX JNS @@Loop end; //---------------------------------------------------------------------------------------------------------------------- function VectorAdd(V1, V2: TVector): TVector; register; // returns the sum of two vectors begin Result[X] := V1[X] + V2[X]; Result[Y] := V1[Y] + V2[Y]; Result[Z] := V1[Z] + V2[Z]; Result[W] := V1[W] + V2[W]; end; //---------------------------------------------------------------------------------------------------------------------- function VectorAffineAdd(V1, V2: TAffineVector): TAffineVector; register; // returns the sum of two vectors begin Result[X] := V1[X] + V2[X]; Result[Y] := V1[Y] + V2[Y]; Result[Z] := V1[Z] + V2[Z]; end; //---------------------------------------------------------------------------------------------------------------------- function VectorSubtract(V1, V2: TVector): TVector; register; // returns the difference of two vectors begin Result[X] := V1[X] - V2[X]; Result[Y] := V1[Y] - V2[Y]; Result[Z] := V1[Z] - V2[Z]; Result[W] := V1[W] - V2[W]; end; //---------------------------------------------------------------------------------------------------------------------- function VectorDotProduct(V1, V2: TVector): Single; register; begin Result := V1[X] * V2[X] + V1[Y] * V2[Y] + V1[Z] * V2[Z] + V1[W] * V2[W]; end; //---------------------------------------------------------------------------------------------------------------------- function VectorAffineDotProduct(V1, V2: TAffineVector): Single; assembler; register; // calculates the dot product between V1 and V2 // EAX contains address of V1 // EDX contains address of V2 // result is stored in ST(0) asm //Result := V1[X] * V2[X] + V1[Y] * V2[Y] + V1[Z] * V2[Z]; FLD DWORD PTR [EAX] FMUL DWORD PTR [EDX] FLD DWORD PTR [EAX + 4] FMUL DWORD PTR [EDX + 4] FADDP FLD DWORD PTR [EAX + 8] FMUL DWORD PTR [EDX + 8] FADDP end; //---------------------------------------------------------------------------------------------------------------------- function VectorCrossProduct(V1, V2: TAffineVector): TAffineVector; // calculates the cross product between vector 1 and 2, Temp is necessary because // either V1 or V2 could also be the result vector // // EAX contains address of V1 // EDX contains address of V2 // ECX contains address of result var Temp: TAffineVector; asm {Temp[X] := V1[Y] * V2[Z]-V1[Z] * V2[Y]; Temp[Y] := V1[Z] * V2[X]-V1[X] * V2[Z]; Temp[Z] := V1[X] * V2[Y]-V1[Y] * V2[X]; Result := Temp;} PUSH EBX // save EBX, must be restored to original value LEA EBX, [Temp] FLD DWORD PTR [EDX + 8] // first load both vectors onto FPU register stack FLD DWORD PTR [EDX + 4] FLD DWORD PTR [EDX + 0] FLD DWORD PTR [EAX + 8] FLD DWORD PTR [EAX + 4] FLD DWORD PTR [EAX + 0] FLD ST(1) // ST(0) := V1[Y] FMUL ST, ST(6) // ST(0) := V1[Y] * V2[Z] FLD ST(3) // ST(0) := V1[Z] FMUL ST, ST(6) // ST(0) := V1[Z] * V2[Y] FSUBP ST(1), ST // ST(0) := ST(1)-ST(0) FSTP DWORD [EBX] // Temp[X] := ST(0) FLD ST(2) // ST(0) := V1[Z] FMUL ST, ST(4) // ST(0) := V1[Z] * V2[X] FLD ST(1) // ST(0) := V1[X] FMUL ST, ST(7) // ST(0) := V1[X] * V2[Z] FSUBP ST(1), ST // ST(0) := ST(1)-ST(0) FSTP DWORD [EBX + 4] // Temp[Y] := ST(0) FLD ST // ST(0) := V1[X] FMUL ST, ST(5) // ST(0) := V1[X] * V2[Y] FLD ST(2) // ST(0) := V1[Y] FMUL ST, ST(5) // ST(0) := V1[Y] * V2[X] FSUBP ST(1), ST // ST(0) := ST(1)-ST(0) FSTP DWORD [EBX + 8] // Temp[Z] := ST(0) FSTP ST(0) // clear FPU register stack FSTP ST(0) FSTP ST(0) FSTP ST(0) FSTP ST(0) FSTP ST(0) MOV EAX, [EBX] // copy Temp to Result MOV [ECX], EAX MOV EAX, [EBX + 4] MOV [ECX + 4], EAX MOV EAX, [EBX + 8] MOV [ECX + 8], EAX POP EBX end; //---------------------------------------------------------------------------------------------------------------------- function VectorPerpendicular(V, N: TAffineVector): TAffineVector; // calculates a vector perpendicular to N (N is assumed to be of unit length) // subtract out any component parallel to N var Dot: Single; begin Dot := VectorAffineDotProduct(V, N); Result[X] := V[X]-Dot * N[X]; Result[Y] := V[Y]-Dot * N[Y]; Result[Z] := V[Z]-Dot * N[Z]; end; //---------------------------------------------------------------------------------------------------------------------- function VectorTransform(V: TVector4f; M: TMatrix): TVector4f; register; // transforms a homogeneous vector by multiplying it with a matrix var TV: TVector4f; begin TV[X] := V[X] * M[X, X] + V[Y] * M[Y, X] + V[Z] * M[Z, X] + V[W] * M[W, X]; TV[Y] := V[X] * M[X, Y] + V[Y] * M[Y, Y] + V[Z] * M[Z, Y] + V[W] * M[W, Y]; TV[Z] := V[X] * M[X, Z] + V[Y] * M[Y, Z] + V[Z] * M[Z, Z] + V[W] * M[W, Z]; TV[W] := V[X] * M[X, W] + V[Y] * M[Y, W] + V[Z] * M[Z, W] + V[W] * M[W, W]; Result := TV end; //---------------------------------------------------------------------------------------------------------------------- function VectorTransform(V: TVector3f; M: TMatrix): TVector3f; // transforms an affine vector by multiplying it with a (homogeneous) matrix var TV: TVector3f; begin TV[X] := V[X] * M[X, X] + V[Y] * M[Y, X] + V[Z] * M[Z, X] + M[W, X]; TV[Y] := V[X] * M[X, Y] + V[Y] * M[Y, Y] + V[Z] * M[Z, Y] + M[W, Y]; TV[Z] := V[X] * M[X, Z] + V[Y] * M[Y, Z] + V[Z] * M[Z, Z] + M[W, Z]; Result := TV; end; //---------------------------------------------------------------------------------------------------------------------- function VectorAffineTransform(V: TAffineVector; M: TAffineMatrix): TAffineVector; register; // transforms an affine vector by multiplying it with a matrix var TV: TAffineVector; begin TV[X] := V[X] * M[X, X] + V[Y] * M[Y, X] + V[Z] * M[Z, X]; TV[Y] := V[X] * M[X, Y] + V[Y] * M[Y, Y] + V[Z] * M[Z, Y]; TV[Z] := V[X] * M[X, Z] + V[Y] * M[Y, Z] + V[Z] * M[Z, Z]; Result := TV; end; //---------------------------------------------------------------------------------------------------------------------- function PointInPolygon(xp, yp : array of Single; x, y: Single): Boolean; // The code below is from Wm. Randolph Franklin <wrf@ecse.rpi.edu> // with some minor modifications for speed. It returns 1 for strictly // interior points, 0 for strictly exterior, and 0 or 1 for points on // the boundary. // This code is not yet tested! var I, J: Integer; begin Result := False; if High(XP) <> High(YP) then Exit; J := High(XP); for I := 0 to High(XP) do begin if ((((yp[I] <= y) and (y < yp[J])) or ((yp[J] <= y) and (y < yp[I]))) and (x < (xp[J] - xp[I]) * (y - yp[I]) / (yp[J] - yp[I]) + xp[I])) then Result := not Result; J := I + 1; end; end; //---------------------------------------------------------------------------------------------------------------------- function QuaternionConjugate(Q: TQuaternion): TQuaternion; assembler; // returns the conjugate of a quaternion // EAX contains address of Q // EDX contains address of result asm FLD DWORD PTR [EAX] FCHS WAIT FSTP DWORD PTR [EDX] FLD DWORD PTR [EAX + 4] FCHS WAIT FSTP DWORD PTR [EDX + 4] FLD DWORD PTR [EAX + 8] FCHS WAIT FSTP DWORD PTR [EDX + 8] MOV EAX, [EAX + 12] MOV [EDX + 12], EAX end; //---------------------------------------------------------------------------------------------------------------------- function QuaternionFromPoints(V1, V2: TAffineVector): TQuaternion; assembler; // constructs a unit quaternion from two points on unit sphere // EAX contains address of V1 // ECX contains address to result // EDX contains address of V2 asm {Result.ImagPart := VectorCrossProduct(V1, V2); Result.RealPart := Sqrt((VectorAffineDotProduct(V1, V2) + 1)/2);} PUSH EAX CALL VectorCrossProduct // determine axis to rotate about POP EAX FLD1 // prepare next calculation Call VectorAffineDotProduct // calculate cos(angle between V1 and V2) FADD ST, ST(1) // transform angle to angle/2 by: cos(a/2)=sqrt((1 + cos(a))/2) FXCH ST(1) FADD ST, ST FDIVP ST(1), ST FSQRT FSTP DWORD PTR [ECX + 12] // Result.RealPart := ST(0) end; //---------------------------------------------------------------------------------------------------------------------- function QuaternionMultiply(qL, qR: TQuaternion): TQuaternion; // Returns quaternion product qL * qR. Note: order is important! // To combine rotations, use the product QuaternionMuliply(qSecond, qFirst), // which gives the effect of rotating by qFirst then qSecond. var Temp : TQuaternion; begin Temp.RealPart := qL.RealPart * qR.RealPart - qL.ImagPart[X] * qR.ImagPart[X] - qL.ImagPart[Y] * qR.ImagPart[Y] - qL.ImagPart[Z] * qR.ImagPart[Z]; Temp.ImagPart[X] := qL.RealPart * qR.ImagPart[X] + qL.ImagPart[X] * qR.RealPart + qL.ImagPart[Y] * qR.ImagPart[Z] - qL.ImagPart[Z] * qR.ImagPart[Y]; Temp.ImagPart[Y] := qL.RealPart * qR.ImagPart[Y] + qL.ImagPart[Y] * qR.RealPart + qL.ImagPart[Z] * qR.ImagPart[X] - qL.ImagPart[X] * qR.ImagPart[Z]; Temp.ImagPart[Z] := qL.RealPart * qR.ImagPart[Z] + qL.ImagPart[Z] * qR.RealPart + qL.ImagPart[X] * qR.ImagPart[Y] - qL.ImagPart[Y] * qR.ImagPart[X]; Result := Temp; end; //---------------------------------------------------------------------------------------------------------------------- function QuaternionToMatrix(Q: TQuaternion): TMatrix; // Constructs rotation matrix from (possibly non-unit) quaternion. // Assumes matrix is used to multiply column vector on the left: // vnew = mat vold. Works correctly for right-handed coordinate system // and right-handed rotations. // Essentially, this function is the same as CreateRotationMatrix and you can consider it as // being for reference here. {var Norm, S, XS, YS, ZS, WX, WY, WZ, XX, XY, XZ, YY, YZ, ZZ : Single; begin Norm := Q.Vector[X] * Q.Vector[X] + Q.Vector[Y] * Q.Vector[Y] + Q.Vector[Z] * Q.Vector[Z] + Q.RealPart * Q.RealPart; if Norm > 0 then S := 2 / Norm else S := 0; XS := Q.Vector[X] * S; YS := Q.Vector[Y] * S; ZS := Q.Vector[Z] * S; WX := Q.RealPart * XS; WY := Q.RealPart * YS; WZ := Q.RealPart * ZS; XX := Q.Vector[X] * XS; XY := Q.Vector[X] * YS; XZ := Q.Vector[X] * ZS; YY := Q.Vector[Y] * YS; YZ := Q.Vector[Y] * ZS; ZZ := Q.Vector[Z] * ZS; Result[X, X] := 1 - (YY + ZZ); Result[Y, X] := XY + WZ; Result[Z, X] := XZ - WY; Result[W, X] := 0; Result[X, Y] := XY - WZ; Result[Y, Y] := 1 - (XX + ZZ); Result[Z, Y] := YZ + WX; Result[W, Y] := 0; Result[X, Z] := XZ + WY; Result[Y, Z] := YZ - WX; Result[Z, Z] := 1 - (XX + YY); Result[W, Z] := 0; Result[X, W] := 0; Result[Y, W] := 0; Result[Z, W] := 0; Result[W, W] := 1;} var V: TAffineVector; SinA, CosA, A, B, C: Extended; begin V := Q.ImagPart; VectorNormalize(V); SinCos(Q.RealPart / 2, SinA, CosA); A := V[X] * SinA; B := V[Y] * SinA; C := V[Z] * SinA; Result := IdentityMatrix; Result[X, X] := 1 - 2 * B * B - 2 * C * C; Result[X, Y] := 2 * A * B - 2 * CosA * C; Result[X, Z] := 2 * A * C + 2 * CosA * B; Result[Y, X] := 2 * A * B + 2 * CosA * C; Result[Y, Y] := 1 - 2 * A * A - 2 * C * C; Result[Y, Z] := 2 * B * C - 2 * CosA * A; Result[Z, X] := 2 * A * C - 2 * CosA * B; Result[Z, Y] := 2 * B * C + 2 * CosA * A; Result[Z, Z] := 1 - 2 * A * A - 2 * B * B; end; //---------------------------------------------------------------------------------------------------------------------- procedure QuaternionToPoints(Q: TQuaternion; var ArcFrom, ArcTo: TAffineVector); register; // converts a unit quaternion into two points on a unit sphere var S: Single; begin S := Sqrt(Q.ImagPart[X] * Q.ImagPart[X] + Q.ImagPart[Y] * Q.ImagPart[Y]); if S = 0 then ArcFrom := MakeAffineVector([0, 1, 0]) else ArcFrom := MakeAffineVector([-Q.ImagPart[Y] / S, Q.ImagPart[X] / S, 0]); ArcTo[X] := Q.RealPart * ArcFrom[X] - Q.ImagPart[Z] * ArcFrom[Y]; ArcTo[Y] := Q.RealPart * ArcFrom[Y] + Q.ImagPart[Z] * ArcFrom[X]; ArcTo[Z] := Q.ImagPart[X] * ArcFrom[Y] - Q.ImagPart[Y] * ArcFrom[X]; if Q.RealPart < 0 then ArcFrom := MakeAffineVector([-ArcFrom[X], -ArcFrom[Y], 0]); end; //---------------------------------------------------------------------------------------------------------------------- function MatrixAffineDeterminant(M: TAffineMatrix): Single; register; // determinant of a 3x3 matrix begin Result := M[X, X] * (M[Y, Y] * M[Z, Z] - M[Z, Y] * M[Y, Z]) - M[X, Y] * (M[Y, X] * M[Z, Z] - M[Z, X] * M[Y, Z]) + M[X, Z] * (M[Y, X] * M[Z, Y] - M[Z, X] * M[Y, Y]); end; //---------------------------------------------------------------------------------------------------------------------- function MatrixDetInternal(a1, a2, a3, b1, b2, b3, c1, c2, c3: Single): Single; // internal version for the determinant of a 3x3 matrix begin Result := a1 * (b2 * c3 - b3 * c2) - b1 * (a2 * c3 - a3 * c2) + c1 * (a2 * b3 - a3 * b2); end; //---------------------------------------------------------------------------------------------------------------------- procedure MatrixAdjoint(var M: TMatrix); register; // Adjoint of a 4x4 matrix - used in the computation of the inverse // of a 4x4 matrix var a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4, d1, d2, d3, d4: Single; begin a1 := M[X, X]; b1 := M[X, Y]; c1 := M[X, Z]; d1 := M[X, W]; a2 := M[Y, X]; b2 := M[Y, Y]; c2 := M[Y, Z]; d2 := M[Y, W]; a3 := M[Z, X]; b3 := M[Z, Y]; c3 := M[Z, Z]; d3 := M[Z, W]; a4 := M[W, X]; b4 := M[W, Y]; c4 := M[W, Z]; d4 := M[W, W]; // row column labeling reversed since we transpose rows & columns M[X, X] := MatrixDetInternal(b2, b3, b4, c2, c3, c4, d2, d3, d4); M[Y, X] := -MatrixDetInternal(a2, a3, a4, c2, c3, c4, d2, d3, d4); M[Z, X] := MatrixDetInternal(a2, a3, a4, b2, b3, b4, d2, d3, d4); M[W, X] := -MatrixDetInternal(a2, a3, a4, b2, b3, b4, c2, c3, c4); M[X, Y] := -MatrixDetInternal(b1, b3, b4, c1, c3, c4, d1, d3, d4); M[Y, Y] := MatrixDetInternal(a1, a3, a4, c1, c3, c4, d1, d3, d4); M[Z, Y] := -MatrixDetInternal(a1, a3, a4, b1, b3, b4, d1, d3, d4); M[W, Y] := MatrixDetInternal(a1, a3, a4, b1, b3, b4, c1, c3, c4); M[X, Z] := MatrixDetInternal(b1, b2, b4, c1, c2, c4, d1, d2, d4); M[Y, Z] := -MatrixDetInternal(a1, a2, a4, c1, c2, c4, d1, d2, d4); M[Z, Z] := MatrixDetInternal(a1, a2, a4, b1, b2, b4, d1, d2, d4); M[W, Z] := -MatrixDetInternal(a1, a2, a4, b1, b2, b4, c1, c2, c4); M[X, W] := -MatrixDetInternal(b1, b2, b3, c1, c2, c3, d1, d2, d3); M[Y, W] := MatrixDetInternal(a1, a2, a3, c1, c2, c3, d1, d2, d3); M[Z, W] := -MatrixDetInternal(a1, a2, a3, b1, b2, b3, d1, d2, d3); M[W, W] := MatrixDetInternal(a1, a2, a3, b1, b2, b3, c1, c2, c3); end; //---------------------------------------------------------------------------------------------------------------------- function MatrixDeterminant(M: TMatrix): Single; register; // Determinant of a 4x4 matrix var a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4, d1, d2, d3, d4 : Single; begin a1 := M[X, X]; b1 := M[X, Y]; c1 := M[X, Z]; d1 := M[X, W]; a2 := M[Y, X]; b2 := M[Y, Y]; c2 := M[Y, Z]; d2 := M[Y, W]; a3 := M[Z, X]; b3 := M[Z, Y]; c3 := M[Z, Z]; d3 := M[Z, W]; a4 := M[W, X]; b4 := M[W, Y]; c4 := M[W, Z]; d4 := M[W, W]; Result := a1 * MatrixDetInternal(b2, b3, b4, c2, c3, c4, d2, d3, d4) - b1 * MatrixDetInternal(a2, a3, a4, c2, c3, c4, d2, d3, d4) + c1 * MatrixDetInternal(a2, a3, a4, b2, b3, b4, d2, d3, d4) - d1 * MatrixDetInternal(a2, a3, a4, b2, b3, b4, c2, c3, c4); end; //---------------------------------------------------------------------------------------------------------------------- procedure MatrixScale(var M: TMatrix; Factor: Single); register; // multiplies all elements of a 4x4 matrix with a factor var I, J: Integer; begin for I := 0 to 3 do for J := 0 to 3 do M[I, J] := M[I, J] * Factor; end; //---------------------------------------------------------------------------------------------------------------------- procedure MatrixInvert(var M: TMatrix); register; // finds the inverse of a 4x4 matrix var Det: Single; begin Det := MatrixDeterminant(M); if Abs(Det) < EPSILON then M := IdentityMatrix else begin MatrixAdjoint(M); MatrixScale(M, 1 / Det); end; end; //---------------------------------------------------------------------------------------------------------------------- procedure MatrixTranspose(var M: TMatrix); register; // computes transpose of 4x4 matrix var I, J: Integer; TM: TMatrix; begin for I := 0 to 3 do for J := 0 to 3 do TM[J, I] := M[I, J]; M := TM; end; //---------------------------------------------------------------------------------------------------------------------- procedure MatrixAffineTranspose(var M: TAffineMatrix); register; // computes transpose of 3x3 matrix var I, J: Integer; TM: TAffineMatrix; begin for I := 0 to 2 do for J := 0 to 2 do TM[J, I] := M[I, J]; M := TM; end; //---------------------------------------------------------------------------------------------------------------------- function MatrixMultiply(M1, M2: TMatrix): TMatrix; register; // multiplies two 4x4 matrices var I, J: Integer; TM: TMatrix; begin for I := 0 to 3 do for J := 0 to 3 do TM[I, J] := M1[I, X] * M2[X, J] + M1[I, Y] * M2[Y, J] + M1[I, Z] * M2[Z, J] + M1[I, W] * M2[W, J]; Result := TM; end; //---------------------------------------------------------------------------------------------------------------------- function CreateRotationMatrix(Axis: TVector3f; Angle: Single): TMatrix; register; // Creates a rotation matrix along the given Axis by the given Angle in radians. var cosine, sine, Len, one_minus_cosine: Extended; begin SinCos(Angle, Sine, Cosine); one_minus_cosine := 1 - cosine; Len := VectorNormalize(Axis); if Len = 0 then Result := IdentityMatrix else begin Result[X, X] := (one_minus_cosine * Sqr(Axis[0])) + Cosine; Result[X, Y] := (one_minus_cosine * Axis[0] * Axis[1]) - (Axis[2] * Sine); Result[X, Z] := (one_minus_cosine * Axis[2] * Axis[0]) + (Axis[1] * Sine); Result[X, W] := 0; Result[Y, X] := (one_minus_cosine * Axis[0] * Axis[1]) + (Axis[2] * Sine); Result[Y, Y] := (one_minus_cosine * Sqr(Axis[1])) + Cosine; Result[Y, Z] := (one_minus_cosine * Axis[1] * Axis[2]) - (Axis[0] * Sine); Result[Y, W] := 0; Result[Z, X] := (one_minus_cosine * Axis[2] * Axis[0]) - (Axis[1] * Sine); Result[Z, Y] := (one_minus_cosine * Axis[1] * Axis[2]) + (Axis[0] * Sine); Result[Z, Z] := (one_minus_cosine * Sqr(Axis[2])) + Cosine; Result[Z, W] := 0; Result[W, X] := 0; Result[W, Y] := 0; Result[W, Z] := 0; Result[W, W] := 1; end; end; //---------------------------------------------------------------------------------------------------------------------- function ConvertRotation(Angles: TAffineVector): TVector; register; { Turn a triplet of rotations about x, y, and z (in that order) into an equivalent rotation around a single axis (all in radians). Rotation of the Angle t about the axis (X, Y, Z) is given by: | X^2 + (1-X^2) Cos(t), XY(1-Cos(t)) + Z Sin(t), XZ(1-Cos(t))-Y Sin(t) | M = | XY(1-Cos(t))-Z Sin(t), Y^2 + (1-Y^2) Cos(t), YZ(1-Cos(t)) + X Sin(t) | | XZ(1-Cos(t)) + Y Sin(t), YZ(1-Cos(t))-X Sin(t), Z^2 + (1-Z^2) Cos(t) | Rotation about the three axes (Angles a1, a2, a3) can be represented as the product of the individual rotation matrices: | 1 0 0 | | Cos(a2) 0 -Sin(a2) | | Cos(a3) Sin(a3) 0 | | 0 Cos(a1) Sin(a1) | * | 0 1 0 | * | -Sin(a3) Cos(a3) 0 | | 0 -Sin(a1) Cos(a1) | | Sin(a2) 0 Cos(a2) | | 0 0 1 | Mx My Mz We now want to solve for X, Y, Z, and t given 9 equations in 4 unknowns. Using the diagonal elements of the two matrices, we get: X^2 + (1-X^2) Cos(t) = M[0][0] Y^2 + (1-Y^2) Cos(t) = M[1][1] Z^2 + (1-Z^2) Cos(t) = M[2][2] Adding the three equations, we get: X^2 + Y^2 + Z^2 - (M[0][0] + M[1][1] + M[2][2]) = - (3 - X^2 - Y^2 - Z^2) Cos(t) Since (X^2 + Y^2 + Z^2) = 1, we can rewrite as: Cos(t) = (1 - (M[0][0] + M[1][1] + M[2][2])) / 2 Solving for t, we get: t = Acos(((M[0][0] + M[1][1] + M[2][2]) - 1) / 2) We can substitute t into the equations for X^2, Y^2, and Z^2 above to get the values for X, Y, and Z. To find the proper signs we note that: 2 X Sin(t) = M[1][2] - M[2][1] 2 Y Sin(t) = M[2][0] - M[0][2] 2 Z Sin(t) = M[0][1] - M[1][0] } var Axis1, Axis2: TVector3f; M, M1, M2: TMatrix; cost, cost1, sint, s1, s2, s3: Single; I: Integer; begin // see if we are only rotating about a single Axis if Abs(Angles[X]) < EPSILON then begin if Abs(Angles[Y]) < EPSILON then begin Result := MakeVector([0, 0, 1, Angles[Z]]); Exit; end else if Abs(Angles[Z]) < EPSILON then begin Result := MakeVector([0, 1, 0, Angles[Y]]); Exit; end end else if (Abs(Angles[Y]) < EPSILON) and (Abs(Angles[Z]) < EPSILON) then begin Result := MakeVector([1, 0, 0, Angles[X]]); Exit; end; // make the rotation matrix Axis1 := MakeAffineVector([1, 0, 0]); M := CreateRotationMatrix(Axis1, Angles[X]); Axis2 := MakeAffineVector([0, 1, 0]); M2 := CreateRotationMatrix(Axis2, Angles[Y]); M1 := MatrixMultiply(M, M2); Axis2 := MakeAffineVector([0, 0, 1]); M2 := CreateRotationMatrix(Axis2, Angles[Z]); M := MatrixMultiply(M1, M2); cost := ((M[X, X] + M[Y, Y] + M[Z, Z])-1) / 2; if cost < -1 then cost := -1 else if cost > 1 - EPSILON then begin // Bad Angle - this would cause a crash Result := MakeVector([1, 0, 0, 0]); Exit; end; cost1 := 1 - cost; Result := Makevector([Sqrt((M[X, X]-cost) / cost1), Sqrt((M[Y, Y]-cost) / cost1), sqrt((M[Z, Z]-cost) / cost1), arccos(cost)]); sint := 2 * Sqrt(1 - cost * cost); // This is actually 2 Sin(t) // Determine the proper signs for I := 0 to 7 do begin if (I and 1) > 1 then s1 := -1 else s1 := 1; if (I and 2) > 1 then s2 := -1 else s2 := 1; if (I and 4) > 1 then s3 := -1 else s3 := 1; if (Abs(s1 * Result[X] * sint-M[Y, Z] + M[Z, Y]) < EPSILON2) and (Abs(s2 * Result[Y] * sint-M[Z, X] + M[X, Z]) < EPSILON2) and (Abs(s3 * Result[Z] * sint-M[X, Y] + M[Y, X]) < EPSILON2) then begin // We found the right combination of signs Result[X] := Result[X] * s1; Result[Y] := Result[Y] * s2; Result[Z] := Result[Z] * s3; Exit; end; end; end; //---------------------------------------------------------------------------------------------------------------------- function CreateRotationMatrixX(Sine, Cosine: Single): TMatrix; register; // creates matrix for rotation about x-axis begin Result := EmptyMatrix; Result[X, X] := 1; Result[Y, Y] := Cosine; Result[Y, Z] := Sine; Result[Z, Y] := -Sine; Result[Z, Z] := Cosine; Result[W, W] := 1; end; //---------------------------------------------------------------------------------------------------------------------- function CreateRotationMatrixY(Sine, Cosine: Single): TMatrix; register; // creates matrix for rotation about y-axis begin Result := EmptyMatrix; Result[X, X] := Cosine; Result[X, Z] := -Sine; Result[Y, Y] := 1; Result[Z, X] := Sine; Result[Z, Z] := Cosine; Result[W, W] := 1; end; //---------------------------------------------------------------------------------------------------------------------- function CreateRotationMatrixZ(Sine, Cosine: Single): TMatrix; register; // creates matrix for rotation about z-axis begin Result := EmptyMatrix; Result[X, X] := Cosine; Result[X, Y] := Sine; Result[Y, X] := -Sine; Result[Y, Y] := Cosine; Result[Z, Z] := 1; Result[W, W] := 1; end; //---------------------------------------------------------------------------------------------------------------------- function CreateScaleMatrix(V: TAffineVector): TMatrix; register; // creates scaling matrix begin Result := IdentityMatrix; Result[X, X] := V[X]; Result[Y, Y] := V[Y]; Result[Z, Z] := V[Z]; end; //---------------------------------------------------------------------------------------------------------------------- function CreateTranslationMatrix(V: TVector): TMatrix; register; // creates translation matrix begin Result := IdentityMatrix; Result[W, X] := V[X]; Result[W, Y] := V[Y]; Result[W, Z] := V[Z]; Result[W, W] := V[W]; end; //---------------------------------------------------------------------------------------------------------------------- function Lerp(Start, Stop, t: Single): Single; // calculates linear interpolation between start and stop at point t begin Result := Start + (Stop - Start) * t; end; //---------------------------------------------------------------------------------------------------------------------- function VectorAffineLerp(V1, V2: TAffineVector; t: Single): TAffineVector; // calculates linear interpolation between vector1 and vector2 at point t begin Result[X] := Lerp(V1[X], V2[X], t); Result[Y] := Lerp(V1[Y], V2[Y], t); Result[Z] := Lerp(V1[Z], V2[Z], t); end; //---------------------------------------------------------------------------------------------------------------------- function VectorLerp(V1, V2: TVector; t: Single): TVector; // calculates linear interpolation between vector1 and vector2 at point t begin Result[X] := Lerp(V1[X], V2[X], t); Result[Y] := Lerp(V1[Y], V2[Y], t); Result[Z] := Lerp(V1[Z], V2[Z], t); Result[W] := Lerp(V1[W], V2[W], t); end; //---------------------------------------------------------------------------------------------------------------------- function QuaternionSlerp(QStart, QEnd: TQuaternion; Spin: Integer; t: Single): TQuaternion; // spherical linear interpolation of unit quaternions with spins // QStart, QEnd - start and end unit quaternions // t - interpolation parameter (0 to 1) // Spin - number of extra spin rotations to involve var beta, // complementary interp parameter theta, // Angle between A and B sint, cost, // sine, cosine of theta phi: Single; // theta plus spins bflip: Boolean; // use negativ t? begin // cosine theta cost := VectorAngle(QStart.ImagPart, QEnd.ImagPart); // if QEnd is on opposite hemisphere from QStart, use -QEnd instead if cost < 0 then begin cost := -cost; bflip := True; end else bflip := False; // if QEnd is (within precision limits) the same as QStart, // just linear interpolate between QStart and QEnd. // Can't do spins, since we don't know what direction to spin. if (1 - cost) < EPSILON then beta := 1 - t else begin // normal case theta := arccos(cost); phi := theta + Spin * Pi; sint := sin(theta); beta := sin(theta - t * phi) / sint; t := sin(t * phi) / sint; end; if bflip then t := -t; // interpolate Result.ImagPart[X] := beta * QStart.ImagPart[X] + t * QEnd.ImagPart[X]; Result.ImagPart[Y] := beta * QStart.ImagPart[Y] + t * QEnd.ImagPart[Y]; Result.ImagPart[Z] := beta * QStart.ImagPart[Z] + t * QEnd.ImagPart[Z]; Result.RealPart := beta * QStart.RealPart + t * QEnd.RealPart; end; //---------------------------------------------------------------------------------------------------------------------- function VectorAffineCombine(V1, V2: TAffineVector; F1, F2: Single): TAffineVector; // makes a linear combination of two vectors and return the result begin Result[X] := (F1 * V1[X]) + (F2 * V2[X]); Result[Y] := (F1 * V1[Y]) + (F2 * V2[Y]); Result[Z] := (F1 * V1[Z]) + (F2 * V2[Z]); end; //---------------------------------------------------------------------------------------------------------------------- function VectorCombine(V1, V2: TVector; F1, F2: Single): TVector; // makes a linear combination of two vectors and return the result begin Result[X] := (F1 * V1[X]) + (F2 * V2[X]); Result[Y] := (F1 * V1[Y]) + (F2 * V2[Y]); Result[Z] := (F1 * V1[Z]) + (F2 * V2[Z]); Result[W] := (F1 * V1[W]) + (F2 * V2[W]); end; //---------------------------------------------------------------------------------------------------------------------- function MatrixDecompose(M: TMatrix; var Tran: TTransformations): Boolean; register; // Author: Spencer W. Thomas, University of Michigan // // MatrixDecompose - Decompose a non-degenerated 4x4 transformation matrix into // the sequence of transformations that produced it. // // The coefficient of each transformation is returned in the corresponding // element of the vector Tran. // // Returns true upon success, false if the matrix is singular. var I, J: Integer; LocMat, pmat, invpmat, tinvpmat: TMatrix; prhs, psol: TVector; Row: array[0..2] of TAffineVector; begin Result := False; locmat := M; // normalize the matrix if locmat[W, W] = 0 then Exit; for I := 0 to 3 do for J := 0 to 3 do locmat[I, J] := locmat[I, J] / locmat[W, W]; // pmat is used to solve for perspective, but it also provides // an easy way to test for singularity of the upper 3x3 component. pmat := locmat; for I := 0 to 2 do pmat[I, W] := 0; pmat[W, W] := 1; if MatrixDeterminant(pmat) = 0 then Exit; // First, isolate perspective. This is the messiest. if (locmat[X, W] <> 0) or (locmat[Y, W] <> 0) or (locmat[Z, W] <> 0) then begin // prhs is the right hand side of the equation. prhs[X] := locmat[X, W]; prhs[Y] := locmat[Y, W]; prhs[Z] := locmat[Z, W]; prhs[W] := locmat[W, W]; // Solve the equation by inverting pmat and multiplying // prhs by the inverse. (This is the easiest way, not // necessarily the best.) invpmat := pmat; MatrixInvert(invpmat); MatrixTranspose(invpmat); psol := VectorTransform(prhs, tinvpmat); // stuff the answer away Tran[ttPerspectiveX] := psol[X]; Tran[ttPerspectiveY] := psol[Y]; Tran[ttPerspectiveZ] := psol[Z]; Tran[ttPerspectiveW] := psol[W]; // clear the perspective partition locmat[X, W] := 0; locmat[Y, W] := 0; locmat[Z, W] := 0; locmat[W, W] := 1; end else begin // no perspective Tran[ttPerspectiveX] := 0; Tran[ttPerspectiveY] := 0; Tran[ttPerspectiveZ] := 0; Tran[ttPerspectiveW] := 0; end; // next take care of translation (easy) for I := 0 to 2 do begin Tran[TTransType(Ord(ttTranslateX) + I)] := locmat[W, I]; locmat[W, I] := 0; end; // now get scale and shear for I := 0 to 2 do begin row[I, X] := locmat[I, X]; row[I, Y] := locmat[I, Y]; row[I, Z] := locmat[I, Z]; end; // compute X scale factor and normalize first row Tran[ttScaleX] := Sqr(VectorNormalize(row[0])); // ml: calculation optimized // compute XY shear factor and make 2nd row orthogonal to 1st Tran[ttShearXY] := VectorAffineDotProduct(row[0], row[1]); row[1] := VectorAffineCombine(row[1], row[0], 1, -Tran[ttShearXY]); // now, compute Y scale and normalize 2nd row Tran[ttScaleY] := Sqr(VectorNormalize(row[1])); // ml: calculation optimized Tran[ttShearXY] := Tran[ttShearXY]/Tran[ttScaleY]; // compute XZ and YZ shears, orthogonalize 3rd row Tran[ttShearXZ] := VectorAffineDotProduct(row[0], row[2]); row[2] := VectorAffineCombine(row[2], row[0], 1, -Tran[ttShearXZ]); Tran[ttShearYZ] := VectorAffineDotProduct(row[1], row[2]); row[2] := VectorAffineCombine(row[2], row[1], 1, -Tran[ttShearYZ]); // next, get Z scale and normalize 3rd row Tran[ttScaleZ] := Sqr(VectorNormalize(row[1])); // (ML) calc. optimized Tran[ttShearXZ] := Tran[ttShearXZ] / tran[ttScaleZ]; Tran[ttShearYZ] := Tran[ttShearYZ] / Tran[ttScaleZ]; // At this point, the matrix (in rows[]) is orthonormal. // Check for a coordinate system flip. If the determinant // is -1, then negate the matrix and the scaling factors. if VectorAffineDotProduct(row[0], VectorCrossProduct(row[1], row[2])) < 0 then for I := 0 to 2 do begin Tran[TTransType(Ord(ttScaleX) + I)] := -Tran[TTransType(Ord(ttScaleX) + I)]; row[I, X] := -row[I, X]; row[I, Y] := -row[I, Y]; row[I, Z] := -row[I, Z]; end; // now, get the rotations out, as described in the gem Tran[ttRotateY] := arcsin(-row[0, Z]); if cos(Tran[ttRotateY]) <> 0 then begin Tran[ttRotateX] := arctan2(row[1, Z], row[2, Z]); Tran[ttRotateZ] := arctan2(row[0, Y], row[0, X]); end else begin tran[ttRotateX] := arctan2(row[1, X], row[1, Y]); tran[ttRotateZ] := 0; end; // All done! Result := True; end; //---------------------------------------------------------------------------------------------------------------------- function VectorDblToFlt(V: THomogeneousDblVector): THomogeneousVector; assembler; // converts a vector containing double sized values into a vector with single sized values asm FLD QWORD PTR [EAX] FSTP DWORD PTR [EDX] FLD QWORD PTR [EAX + 8] FSTP DWORD PTR [EDX + 4] FLD QWORD PTR [EAX + 16] FSTP DWORD PTR [EDX + 8] FLD QWORD PTR [EAX + 24] FSTP DWORD PTR [EDX + 12] end; //---------------------------------------------------------------------------------------------------------------------- function VectorAffineDblToFlt(V: TAffineDblVector): TAffineVector; assembler; // converts a vector containing double sized values into a vector with single sized values asm FLD QWORD PTR [EAX] FSTP DWORD PTR [EDX] FLD QWORD PTR [EAX + 8] FSTP DWORD PTR [EDX + 4] FLD QWORD PTR [EAX + 16] FSTP DWORD PTR [EDX + 8] end; //---------------------------------------------------------------------------------------------------------------------- function VectorAffineFltToDbl(V: TAffineVector): TAffineDblVector; assembler; // converts a vector containing single sized values into a vector with double sized values asm FLD DWORD PTR [EAX] FSTP QWORD PTR [EDX] FLD DWORD PTR [EAX + 8] FSTP QWORD PTR [EDX + 4] FLD DWORD PTR [EAX + 16] FSTP QWORD PTR [EDX + 8] end; //---------------------------------------------------------------------------------------------------------------------- function VectorFltToDbl(V: TVector): THomogeneousDblVector; assembler; // converts a vector containing single sized values into a vector with double sized values asm FLD DWORD PTR [EAX] FSTP QWORD PTR [EDX] FLD DWORD PTR [EAX + 8] FSTP QWORD PTR [EDX + 4] FLD DWORD PTR [EAX + 16] FSTP QWORD PTR [EDX + 8] FLD DWORD PTR [EAX + 24] FSTP QWORD PTR [EDX + 12] end; //----------------- coordinate system manipulation functions ----------------------------------------------------------- function Turn(Matrix: TMatrix; Angle: Single): TMatrix; // rotates the given coordinate system (represented by the matrix) around its Y-axis begin Result := MatrixMultiply(Matrix, CreateRotationMatrix(MakeAffineVector(Matrix[1]), Angle)); end; //---------------------------------------------------------------------------------------------------------------------- function Turn(Matrix: TMatrix; MasterUp: TAffineVector; Angle: Single): TMatrix; // rotates the given coordinate system (represented by the matrix) around MasterUp begin Result := MatrixMultiply(Matrix, CreateRotationMatrix(MasterUp, Angle)); end; //---------------------------------------------------------------------------------------------------------------------- function Pitch(Matrix: TMatrix; Angle: Single): TMatrix; // rotates the given coordinate system (represented by the matrix) around its X-axis begin Result := MatrixMultiply(Matrix, CreateRotationMatrix(MakeAffineVector(Matrix[0]), Angle)); end; //---------------------------------------------------------------------------------------------------------------------- function Pitch(Matrix: TMatrix; MasterRight: TAffineVector; Angle: Single): TMatrix; overload; // rotates the given coordinate system (represented by the matrix) around MasterRight begin Result := MatrixMultiply(Matrix, CreateRotationMatrix(MasterRight, Angle)); end; //---------------------------------------------------------------------------------------------------------------------- function Roll(Matrix: TMatrix; Angle: Single): TMatrix; // rotates the given coordinate system (represented by the matrix) around its Z-axis begin Result := MatrixMultiply(Matrix, CreateRotationMatrix(MakeAffineVector(Matrix[2]), Angle)); end; //---------------------------------------------------------------------------------------------------------------------- function Roll(Matrix: TMatrix; MasterDirection: TAffineVector; Angle: Single): TMatrix; overload; // rotates the given coordinate system (represented by the matrix) around MasterDirection begin Result := MatrixMultiply(Matrix, CreateRotationMatrix(MasterDirection, Angle)); end; //---------------------------------------------------------------------------------------------------------------------- end.