aboutsummaryrefslogtreecommitdiffstats
path: root/Game
diff options
context:
space:
mode:
authortobigun <tobigun@b956fd51-792f-4845-bead-9b4dfca2ff2c>2008-03-06 17:03:42 +0000
committertobigun <tobigun@b956fd51-792f-4845-bead-9b4dfca2ff2c>2008-03-06 17:03:42 +0000
commit86703a13c79ceabf9d9b98b0cb8fc5115dfba05b (patch)
tree6bb3fecb5edf1f26a4529e5cf59bc60230509710 /Game
parent85bb6e6bf47e682e9c98b29756b0711c0e374ffa (diff)
downloadusdx-86703a13c79ceabf9d9b98b0cb8fc5115dfba05b.tar.gz
usdx-86703a13c79ceabf9d9b98b0cb8fc5115dfba05b.tar.xz
usdx-86703a13c79ceabf9d9b98b0cb8fc5115dfba05b.zip
Added all contents of the orginal Audacity FFT-file although it might be replaced by FFTW someday
git-svn-id: svn://svn.code.sf.net/p/ultrastardx/svn/trunk@922 b956fd51-792f-4845-bead-9b4dfca2ff2c
Diffstat (limited to '')
-rw-r--r--Game/Code/lib/fft/UFFT.pas262
1 files changed, 258 insertions, 4 deletions
diff --git a/Game/Code/lib/fft/UFFT.pas b/Game/Code/lib/fft/UFFT.pas
index 1c4c3e75..e0f03630 100644
--- a/Game/Code/lib/fft/UFFT.pas
+++ b/Game/Code/lib/fft/UFFT.pas
@@ -56,8 +56,87 @@ type
TSingleArray = array[0..0] of Single;
PSingleArray = ^TSingleArray;
+ TFFTWindowFunc = (
+ fwfRectangular,
+ fwfBartlett,
+ fwfHamming,
+ fwfHanning,
+ fwfBlackman,
+ fwfBlackman_Harris,
+ fwfWelch,
+ fwfGaussian2_5,
+ fwfGaussian3_5,
+ fwfGaussian4_5
+ );
+
+const
+ FFTWindowName: array[TFFTWindowFunc] of string = (
+ 'Rectangular',
+ 'Bartlett',
+ 'Hamming',
+ 'Hanning',
+ 'Blackman',
+ 'Blackman-Harris',
+ 'Welch',
+ 'Gaussian(a=2.5)',
+ 'Gaussian(a=3.5)',
+ 'Gaussian(a=4.5)'
+ );
+
+(*
+ * This is the function you will use the most often.
+ * Given an array of floats, this will compute the power
+ * spectrum by doing a Real FFT and then computing the
+ * sum of the squares of the real and imaginary parts.
+ * Note that the output array is half the length of the
+ * input array, and that NumSamples must be a power of two.
+ *)
procedure PowerSpectrum(NumSamples: Integer; In_, Out_: PSingleArray);
-procedure WindowFunc(NumSamples: Integer; in_: PSingleArray); {$IFDEF HasInline}inline;{$ENDIF}
+
+(*
+ * Computes an FFT when the input data is real but you still
+ * want complex data as output. The output arrays are half
+ * the length of the input, and NumSamples must be a power of
+ * two.
+ *)
+procedure RealFFT(NumSamples: integer;
+ RealIn, RealOut, ImagOut: PSingleArray);
+
+(*
+ * Computes a FFT of complex input and returns complex output.
+ * Currently this is the only function here that supports the
+ * inverse transform as well.
+ *)
+procedure FFT(NumSamples: Integer;
+ InverseTransform: boolean;
+ RealIn, ImagIn, RealOut, ImagOut: PSingleArray);
+
+(*
+ * Applies a windowing function to the data in place
+ *
+ * 0: Rectangular (no window)
+ * 1: Bartlett (triangular)
+ * 2: Hamming
+ * 3: Hanning
+ * 4: Blackman
+ * 5: Blackman-Harris
+ * 6: Welch
+ * 7: Gaussian(a=2.5)
+ * 8: Gaussian(a=3.5)
+ * 9: Gaussian(a=4.5)
+ *)
+procedure WindowFunc(whichFunction: TFFTWindowFunc; NumSamples: Integer; in_: PSingleArray);
+
+(*
+ * Returns the name of the windowing function (for UI display)
+ *)
+function WindowFuncName(whichFunction: TFFTWindowFunc): string;
+
+(*
+ * Returns the number of windowing functions supported
+ *)
+function NumWindowFuncs(): integer;
+
implementation
@@ -252,6 +331,80 @@ begin
end;
end;
+(*
+ * Real Fast Fourier Transform
+ *
+ * This function was based on the code in Numerical Recipes in C.
+ * In Num. Rec., the inner loop is based on a single 1-based array
+ * of interleaved real and imaginary numbers. Because we have two
+ * separate zero-based arrays, our indices are quite different.
+ * Here is the correspondence between Num. Rec. indices and our indices:
+ *
+ * i1 <-> real[i]
+ * i2 <-> imag[i]
+ * i3 <-> real[n/2-i]
+ * i4 <-> imag[n/2-i]
+ *)
+procedure RealFFT(NumSamples: integer; RealIn, RealOut, ImagOut: PSingleArray);
+var
+ Half: Integer;
+ i: Integer;
+ theta: Single;
+ tmpReal, tmpImag: PSingleArray;
+ wtemp: Single;
+ wpr, wpi, wr, wi: Single;
+ i3: Integer;
+ h1r, h1i, h2r, h2i: Single;
+begin
+ Half := NumSamples div 2;
+
+ theta := Pi / Half;
+
+ GetMem(tmpReal, Half * sizeof(Single));
+ GetMem(tmpImag, Half * sizeof(Single));
+
+ for i := 0 to Half-1 do
+ begin
+ tmpReal[i] := RealIn[2 * i];
+ tmpImag[i] := RealIn[2 * i + 1];
+ end;
+
+ FFT(Half, false, tmpReal, tmpImag, RealOut, ImagOut);
+
+ wtemp := sin(0.5 * theta);
+
+ wpr := -2.0 * wtemp * wtemp;
+ wpi := sin(theta);
+ wr := 1.0 + wpr;
+ wi := wpi;
+
+ for i := 1 to (Half div 2)-1 do
+ begin
+ i3 := Half - i;
+
+ h1r := 0.5 * (RealOut[i] + RealOut[i3]);
+ h1i := 0.5 * (ImagOut[i] - ImagOut[i3]);
+ h2r := 0.5 * (ImagOut[i] + ImagOut[i3]);
+ h2i := -0.5 * (RealOut[i] - RealOut[i3]);
+
+ RealOut[i] := h1r + wr * h2r - wi * h2i;
+ ImagOut[i] := h1i + wr * h2i + wi * h2r;
+ RealOut[i3] := h1r - wr * h2r + wi * h2i;
+ ImagOut[i3] := -h1i + wr * h2i + wi * h2r;
+
+ wtemp := wr;
+ wr := wtemp * wpr - wi * wpi + wr;
+ wi := wi * wpr + wtemp * wpi + wi;
+ end;
+
+ h1r := RealOut[0];
+ RealOut[0] := h1r + ImagOut[0];
+ ImagOut[0] := h1r - ImagOut[0];
+
+ FreeMem(tmpReal);
+ FreeMem(tmpImag);
+end;
+
{*
* PowerSpectrum
*
@@ -336,12 +489,113 @@ begin
FreeMem(ImagOut);
end;
-procedure WindowFunc(NumSamples: Integer; in_: PSingleArray); {$IFDEF HasInline}inline;{$ENDIF}
+(*
+ * Windowing Functions
+ *)
+function NumWindowFuncs(): integer;
+begin
+ Result := Length(FFTWindowName);
+end;
+
+function WindowFuncName(whichFunction: TFFTWindowFunc): string;
+begin
+ Result := FFTWindowName[whichFunction];
+end;
+
+procedure WindowFunc(whichFunction: TFFTWindowFunc; NumSamples: Integer; in_: PSingleArray);
var
i: Integer;
+ A: Single;
begin
- for i := 0 to NumSamples-1 do
- in_[i] := in_[i] * (0.50 - 0.50 * cos(2 * Pi * i / (NumSamples - 1)));
+ case whichFunction of
+ fwfBartlett:
+ begin
+ // Bartlett (triangular) window
+ for i := 0 to (NumSamples div 2)-1 do
+ begin
+ in_[i] := in_[i] * (i / (NumSamples / 2));
+ in_[i + (NumSamples div 2)] :=
+ in_[i + (NumSamples div 2)] *
+ (1.0 - (i / (NumSamples / 2)));
+ end;
+ end;
+ fwfHamming:
+ begin
+ // Hamming
+ for i := 0 to NumSamples-1 do
+ begin
+ in_[i] := in_[i] * (0.54 - 0.46 * cos(2 * Pi * i / (NumSamples - 1)));
+ end;
+ end;
+ fwfHanning:
+ begin
+ // Hanning
+ for i := 0 to NumSamples-1 do
+ begin
+ in_[i] := in_[i] * (0.50 - 0.50 * cos(2 * Pi * i / (NumSamples - 1)));
+ end;
+ end;
+ fwfBlackman:
+ begin
+ // Blackman
+ for i := 0 to NumSamples-1 do
+ begin
+ in_[i] := in_[i] * (0.42 - 0.5 * cos (2 * Pi * i / (NumSamples - 1)) + 0.08 * cos (4 * Pi * i / (NumSamples - 1)));
+ end;
+ end;
+ fwfBlackman_Harris:
+ begin
+ // Blackman-Harris
+ for i := 0 to NumSamples-1 do
+ begin
+ in_[i] := in_[i] * (0.35875 - 0.48829 * cos(2 * Pi * i /(NumSamples-1)) + 0.14128 * cos(4 * Pi * i/(NumSamples-1)) - 0.01168 * cos(6 * Pi * i/(NumSamples-1)));
+ end;
+ end;
+ fwfWelch:
+ begin
+ // Welch
+ for i := 0 to NumSamples-1 do
+ begin
+ in_[i] := in_[i] * 4*i/NumSamples*(1-(i/NumSamples));
+ end;
+ end;
+ fwfGaussian2_5:
+ begin
+ // Gaussian (a=2.5)
+ // Precalculate some values, and simplify the fmla to try and reduce overhead
+ A := -2*2.5*2.5;
+
+ for i := 0 to NumSamples-1 do
+ begin
+ // full
+ // in_[i] := in_[i] * exp(-0.5*(A*((i-NumSamples/2)/NumSamples/2))*(A*((i-NumSamples/2)/NumSamples/2)));
+ // reduced
+ //in_[i] := in_[i] * exp(A*(0.25 + ((i/NumSamples)*(i/NumSamples)) - (i/NumSamples)));
+ end;
+ end;
+ fwfGaussian3_5:
+ begin
+ // Gaussian (a=3.5)
+ A := -2*3.5*3.5;
+
+ for i := 0 to NumSamples-1 do
+ begin
+ // reduced
+ in_[i] := in_[i] * exp(A*(0.25 + ((i/NumSamples)*(i/NumSamples)) - (i/NumSamples)));
+ end;
+ end;
+ fwfGaussian4_5:
+ begin
+ // Gaussian (a=4.5)
+ A := -2*4.5*4.5;
+
+ for i := 0 to NumSamples-1 do
+ begin
+ // reduced
+ in_[i] := in_[i] * exp(A*(0.25 + ((i/NumSamples)*(i/NumSamples)) - (i/NumSamples)));
+ end;
+ end;
+ end;
end;
end.