diff options
author | tobigun <tobigun@b956fd51-792f-4845-bead-9b4dfca2ff2c> | 2008-03-06 17:03:42 +0000 |
---|---|---|
committer | tobigun <tobigun@b956fd51-792f-4845-bead-9b4dfca2ff2c> | 2008-03-06 17:03:42 +0000 |
commit | 86703a13c79ceabf9d9b98b0cb8fc5115dfba05b (patch) | |
tree | 6bb3fecb5edf1f26a4529e5cf59bc60230509710 /Game/Code/lib/fft | |
parent | 85bb6e6bf47e682e9c98b29756b0711c0e374ffa (diff) | |
download | usdx-86703a13c79ceabf9d9b98b0cb8fc5115dfba05b.tar.gz usdx-86703a13c79ceabf9d9b98b0cb8fc5115dfba05b.tar.xz usdx-86703a13c79ceabf9d9b98b0cb8fc5115dfba05b.zip |
Added all contents of the orginal Audacity FFT-file although it might be replaced by FFTW someday
git-svn-id: svn://svn.code.sf.net/p/ultrastardx/svn/trunk@922 b956fd51-792f-4845-bead-9b4dfca2ff2c
Diffstat (limited to 'Game/Code/lib/fft')
-rw-r--r-- | Game/Code/lib/fft/UFFT.pas | 262 |
1 files changed, 258 insertions, 4 deletions
diff --git a/Game/Code/lib/fft/UFFT.pas b/Game/Code/lib/fft/UFFT.pas index 1c4c3e75..e0f03630 100644 --- a/Game/Code/lib/fft/UFFT.pas +++ b/Game/Code/lib/fft/UFFT.pas @@ -56,8 +56,87 @@ type TSingleArray = array[0..0] of Single; PSingleArray = ^TSingleArray; + TFFTWindowFunc = ( + fwfRectangular, + fwfBartlett, + fwfHamming, + fwfHanning, + fwfBlackman, + fwfBlackman_Harris, + fwfWelch, + fwfGaussian2_5, + fwfGaussian3_5, + fwfGaussian4_5 + ); + +const + FFTWindowName: array[TFFTWindowFunc] of string = ( + 'Rectangular', + 'Bartlett', + 'Hamming', + 'Hanning', + 'Blackman', + 'Blackman-Harris', + 'Welch', + 'Gaussian(a=2.5)', + 'Gaussian(a=3.5)', + 'Gaussian(a=4.5)' + ); + +(* + * This is the function you will use the most often. + * Given an array of floats, this will compute the power + * spectrum by doing a Real FFT and then computing the + * sum of the squares of the real and imaginary parts. + * Note that the output array is half the length of the + * input array, and that NumSamples must be a power of two. + *) procedure PowerSpectrum(NumSamples: Integer; In_, Out_: PSingleArray); -procedure WindowFunc(NumSamples: Integer; in_: PSingleArray); {$IFDEF HasInline}inline;{$ENDIF} + +(* + * Computes an FFT when the input data is real but you still + * want complex data as output. The output arrays are half + * the length of the input, and NumSamples must be a power of + * two. + *) +procedure RealFFT(NumSamples: integer; + RealIn, RealOut, ImagOut: PSingleArray); + +(* + * Computes a FFT of complex input and returns complex output. + * Currently this is the only function here that supports the + * inverse transform as well. + *) +procedure FFT(NumSamples: Integer; + InverseTransform: boolean; + RealIn, ImagIn, RealOut, ImagOut: PSingleArray); + +(* + * Applies a windowing function to the data in place + * + * 0: Rectangular (no window) + * 1: Bartlett (triangular) + * 2: Hamming + * 3: Hanning + * 4: Blackman + * 5: Blackman-Harris + * 6: Welch + * 7: Gaussian(a=2.5) + * 8: Gaussian(a=3.5) + * 9: Gaussian(a=4.5) + *) +procedure WindowFunc(whichFunction: TFFTWindowFunc; NumSamples: Integer; in_: PSingleArray); + +(* + * Returns the name of the windowing function (for UI display) + *) +function WindowFuncName(whichFunction: TFFTWindowFunc): string; + +(* + * Returns the number of windowing functions supported + *) +function NumWindowFuncs(): integer; + implementation @@ -252,6 +331,80 @@ begin end; end; +(* + * Real Fast Fourier Transform + * + * This function was based on the code in Numerical Recipes in C. + * In Num. Rec., the inner loop is based on a single 1-based array + * of interleaved real and imaginary numbers. Because we have two + * separate zero-based arrays, our indices are quite different. + * Here is the correspondence between Num. Rec. indices and our indices: + * + * i1 <-> real[i] + * i2 <-> imag[i] + * i3 <-> real[n/2-i] + * i4 <-> imag[n/2-i] + *) +procedure RealFFT(NumSamples: integer; RealIn, RealOut, ImagOut: PSingleArray); +var + Half: Integer; + i: Integer; + theta: Single; + tmpReal, tmpImag: PSingleArray; + wtemp: Single; + wpr, wpi, wr, wi: Single; + i3: Integer; + h1r, h1i, h2r, h2i: Single; +begin + Half := NumSamples div 2; + + theta := Pi / Half; + + GetMem(tmpReal, Half * sizeof(Single)); + GetMem(tmpImag, Half * sizeof(Single)); + + for i := 0 to Half-1 do + begin + tmpReal[i] := RealIn[2 * i]; + tmpImag[i] := RealIn[2 * i + 1]; + end; + + FFT(Half, false, tmpReal, tmpImag, RealOut, ImagOut); + + wtemp := sin(0.5 * theta); + + wpr := -2.0 * wtemp * wtemp; + wpi := sin(theta); + wr := 1.0 + wpr; + wi := wpi; + + for i := 1 to (Half div 2)-1 do + begin + i3 := Half - i; + + h1r := 0.5 * (RealOut[i] + RealOut[i3]); + h1i := 0.5 * (ImagOut[i] - ImagOut[i3]); + h2r := 0.5 * (ImagOut[i] + ImagOut[i3]); + h2i := -0.5 * (RealOut[i] - RealOut[i3]); + + RealOut[i] := h1r + wr * h2r - wi * h2i; + ImagOut[i] := h1i + wr * h2i + wi * h2r; + RealOut[i3] := h1r - wr * h2r + wi * h2i; + ImagOut[i3] := -h1i + wr * h2i + wi * h2r; + + wtemp := wr; + wr := wtemp * wpr - wi * wpi + wr; + wi := wi * wpr + wtemp * wpi + wi; + end; + + h1r := RealOut[0]; + RealOut[0] := h1r + ImagOut[0]; + ImagOut[0] := h1r - ImagOut[0]; + + FreeMem(tmpReal); + FreeMem(tmpImag); +end; + {* * PowerSpectrum * @@ -336,12 +489,113 @@ begin FreeMem(ImagOut); end; -procedure WindowFunc(NumSamples: Integer; in_: PSingleArray); {$IFDEF HasInline}inline;{$ENDIF} +(* + * Windowing Functions + *) +function NumWindowFuncs(): integer; +begin + Result := Length(FFTWindowName); +end; + +function WindowFuncName(whichFunction: TFFTWindowFunc): string; +begin + Result := FFTWindowName[whichFunction]; +end; + +procedure WindowFunc(whichFunction: TFFTWindowFunc; NumSamples: Integer; in_: PSingleArray); var i: Integer; + A: Single; begin - for i := 0 to NumSamples-1 do - in_[i] := in_[i] * (0.50 - 0.50 * cos(2 * Pi * i / (NumSamples - 1))); + case whichFunction of + fwfBartlett: + begin + // Bartlett (triangular) window + for i := 0 to (NumSamples div 2)-1 do + begin + in_[i] := in_[i] * (i / (NumSamples / 2)); + in_[i + (NumSamples div 2)] := + in_[i + (NumSamples div 2)] * + (1.0 - (i / (NumSamples / 2))); + end; + end; + fwfHamming: + begin + // Hamming + for i := 0 to NumSamples-1 do + begin + in_[i] := in_[i] * (0.54 - 0.46 * cos(2 * Pi * i / (NumSamples - 1))); + end; + end; + fwfHanning: + begin + // Hanning + for i := 0 to NumSamples-1 do + begin + in_[i] := in_[i] * (0.50 - 0.50 * cos(2 * Pi * i / (NumSamples - 1))); + end; + end; + fwfBlackman: + begin + // Blackman + for i := 0 to NumSamples-1 do + begin + in_[i] := in_[i] * (0.42 - 0.5 * cos (2 * Pi * i / (NumSamples - 1)) + 0.08 * cos (4 * Pi * i / (NumSamples - 1))); + end; + end; + fwfBlackman_Harris: + begin + // Blackman-Harris + for i := 0 to NumSamples-1 do + begin + in_[i] := in_[i] * (0.35875 - 0.48829 * cos(2 * Pi * i /(NumSamples-1)) + 0.14128 * cos(4 * Pi * i/(NumSamples-1)) - 0.01168 * cos(6 * Pi * i/(NumSamples-1))); + end; + end; + fwfWelch: + begin + // Welch + for i := 0 to NumSamples-1 do + begin + in_[i] := in_[i] * 4*i/NumSamples*(1-(i/NumSamples)); + end; + end; + fwfGaussian2_5: + begin + // Gaussian (a=2.5) + // Precalculate some values, and simplify the fmla to try and reduce overhead + A := -2*2.5*2.5; + + for i := 0 to NumSamples-1 do + begin + // full + // in_[i] := in_[i] * exp(-0.5*(A*((i-NumSamples/2)/NumSamples/2))*(A*((i-NumSamples/2)/NumSamples/2))); + // reduced + //in_[i] := in_[i] * exp(A*(0.25 + ((i/NumSamples)*(i/NumSamples)) - (i/NumSamples))); + end; + end; + fwfGaussian3_5: + begin + // Gaussian (a=3.5) + A := -2*3.5*3.5; + + for i := 0 to NumSamples-1 do + begin + // reduced + in_[i] := in_[i] * exp(A*(0.25 + ((i/NumSamples)*(i/NumSamples)) - (i/NumSamples))); + end; + end; + fwfGaussian4_5: + begin + // Gaussian (a=4.5) + A := -2*4.5*4.5; + + for i := 0 to NumSamples-1 do + begin + // reduced + in_[i] := in_[i] * exp(A*(0.25 + ((i/NumSamples)*(i/NumSamples)) - (i/NumSamples))); + end; + end; + end; end; end. |