/* the Music Player Daemon (MPD)
* Copyright (C) 2003-2007 by Warren Dukes (warren.dukes@gmail.com)
* This project's homepage is: http://www.musicpd.org
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "playlist_internal.h"
#include "playlist_save.h"
#include "queue_print.h"
#include "locate.h"
#include "player_control.h"
#include "command.h"
#include "ls.h"
#include "tag.h"
#include "song.h"
#include "conf.h"
#include "database.h"
#include "mapper.h"
#include "stored_playlist.h"
#include "ack.h"
#include "idle.h"
#include <glib.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
static void incrPlaylistVersion(struct playlist *playlist)
{
queue_increment_version(&playlist->queue);
idle_add(IDLE_PLAYLIST);
}
void playlistVersionChange(struct playlist *playlist)
{
queue_modify_all(&playlist->queue);
idle_add(IDLE_PLAYLIST);
}
void
playlist_tag_changed(struct playlist *playlist)
{
if (!playlist->playing)
return;
assert(playlist->current >= 0);
queue_modify(&playlist->queue, playlist->current);
idle_add(IDLE_PLAYLIST);
}
void
playlist_init(struct playlist *playlist)
{
queue_init(&playlist->queue,
config_get_positive(CONF_MAX_PLAYLIST_LENGTH,
DEFAULT_PLAYLIST_MAX_LENGTH));
playlist->queued = -1;
playlist->current = -1;
}
void
playlist_finish(struct playlist *playlist)
{
queue_finish(&playlist->queue);
}
void clearPlaylist(struct playlist *playlist)
{
stopPlaylist(playlist);
/* make sure there are no references to allocated songs
anymore */
for (unsigned i = 0; i < queue_length(&playlist->queue); i++) {
const struct song *song = queue_get(&playlist->queue, i);
if (!song_in_database(song))
pc_song_deleted(song);
}
queue_clear(&playlist->queue);
playlist->current = -1;
incrPlaylistVersion(playlist);
}
/**
* Queue a song, addressed by its order number.
*/
static void
playlist_queue_song_order(struct playlist *playlist, unsigned order)
{
struct song *song;
char *uri;
assert(queue_valid_order(&playlist->queue, order));
playlist->queued = order;
song = queue_get_order(&playlist->queue, order);
uri = song_get_uri(song);
g_debug("playlist: queue song %i:\"%s\"",
playlist->queued, uri);
g_free(uri);
queueSong(song);
}
/**
* Check if the player thread has already started playing the "queued"
* song.
*/
static void syncPlaylistWithQueue(struct playlist *playlist)
{
if (pc.next_song == NULL && playlist->queued != -1) {
/* queued song has started: copy queued to current,
and notify the clients */
playlist->current = playlist->queued;
playlist->queued = -1;
idle_add(IDLE_PLAYER);
}
}
const struct song *
playlist_get_queued_song(struct playlist *playlist)
{
if (!playlist->playing || playlist->queued < 0)
return NULL;
return queue_get_order(&playlist->queue, playlist->queued);
}
void
playlist_update_queued_song(struct playlist *playlist, const struct song *prev)
{
int next_order;
const struct song *next_song;
if (!playlist->playing)
return;
assert(!queue_is_empty(&playlist->queue));
assert((playlist->queued < 0) == (prev == NULL));
next_order = playlist->current >= 0
? queue_next_order(&playlist->queue, playlist->current)
: 0;
if (next_order == 0 && playlist->queue.random) {
/* shuffle the song order again, so we get a different
order each time the playlist is played
completely */
unsigned current_position =
queue_order_to_position(&playlist->queue,
playlist->current);
queue_shuffle_order(&playlist->queue);
/* make sure that the playlist->current still points to
the current song, after the song order has been
shuffled */
playlist->current =
queue_position_to_order(&playlist->queue,
current_position);
}
if (next_order >= 0)
next_song = queue_get_order(&playlist->queue, next_order);
else
next_song = NULL;
if (prev != NULL && next_song != prev) {
/* clear the currently queued song */
pc_cancel();
playlist->queued = -1;
}
if (next_order >= 0) {
if (next_song != prev)
playlist_queue_song_order(playlist, next_order);
else
playlist->queued = next_order;
}
}
#ifndef WIN32
enum playlist_result
playlist_append_file(struct playlist *playlist, const char *path, int uid,
unsigned *added_id)
{
int ret;
struct stat st;
struct song *song;
if (uid <= 0)
/* unauthenticated client */
return PLAYLIST_RESULT_DENIED;
ret = stat(path, &st);
if (ret < 0)
return PLAYLIST_RESULT_ERRNO;
if (st.st_uid != (uid_t)uid && (st.st_mode & 0444) != 0444)
/* client is not owner */
return PLAYLIST_RESULT_DENIED;
song = song_file_load(path, NULL);
if (song == NULL)
return PLAYLIST_RESULT_NO_SUCH_SONG;
return addSongToPlaylist(playlist, song, added_id);
}
#endif
static struct song *
song_by_url(const char *url)
{
struct song *song;
song = db_get_song(url);
if (song != NULL)
return song;
if (uri_has_scheme(url))
return song_remote_new(url);
return NULL;
}
enum playlist_result
addToPlaylist(struct playlist *playlist, const char *url, unsigned *added_id)
{
struct song *song;
g_debug("add to playlist: %s", url);
song = song_by_url(url);
if (song == NULL)
return PLAYLIST_RESULT_NO_SUCH_SONG;
return addSongToPlaylist(playlist, song, added_id);
}
enum playlist_result
addSongToPlaylist(struct playlist *playlist,
struct song *song, unsigned *added_id)
{
const struct song *queued;
unsigned id;
if (queue_is_full(&playlist->queue))
return PLAYLIST_RESULT_TOO_LARGE;
queued = playlist_get_queued_song(playlist);
id = queue_append(&playlist->queue, song);
if (playlist->queue.random) {
/* shuffle the new song into the list of remaining
songs to play */
unsigned start;
if (playlist->queued >= 0)
start = playlist->queued + 1;
else
start = playlist->current + 1;
if (start < queue_length(&playlist->queue))
queue_shuffle_order_last(&playlist->queue, start,
queue_length(&playlist->queue));
}
incrPlaylistVersion(playlist);
playlist_update_queued_song(playlist, queued);
if (added_id)
*added_id = id;
return PLAYLIST_RESULT_SUCCESS;
}
enum playlist_result
swapSongsInPlaylist(struct playlist *playlist, unsigned song1, unsigned song2)
{
const struct song *queued;
if (!queue_valid_position(&playlist->queue, song1) ||
!queue_valid_position(&playlist->queue, song2))
return PLAYLIST_RESULT_BAD_RANGE;
queued = playlist_get_queued_song(playlist);
queue_swap(&playlist->queue, song1, song2);
if (playlist->queue.random) {
/* update the queue order, so that playlist->current
still points to the current song order */
queue_swap_order(&playlist->queue,
queue_position_to_order(&playlist->queue,
song1),
queue_position_to_order(&playlist->queue,
song2));
} else {
/* correct the "current" song order */
if (playlist->current == (int)song1)
playlist->current = song2;
else if (playlist->current == (int)song2)
playlist->current = song1;
}
incrPlaylistVersion(playlist);
playlist_update_queued_song(playlist, queued);
return PLAYLIST_RESULT_SUCCESS;
}
enum playlist_result
swapSongsInPlaylistById(struct playlist *playlist, unsigned id1, unsigned id2)
{
int song1 = queue_id_to_position(&playlist->queue, id1);
int song2 = queue_id_to_position(&playlist->queue, id2);
if (song1 < 0 || song2 < 0)
return PLAYLIST_RESULT_NO_SUCH_SONG;
return swapSongsInPlaylist(playlist, song1, song2);
}
enum playlist_result
deleteFromPlaylist(struct playlist *playlist, unsigned song)
{
const struct song *queued;
unsigned songOrder;
if (song >= queue_length(&playlist->queue))
return PLAYLIST_RESULT_BAD_RANGE;
queued = playlist_get_queued_song(playlist);
songOrder = queue_position_to_order(&playlist->queue, song);
if (playlist->playing && playlist->current == (int)songOrder) {
bool paused = getPlayerState() == PLAYER_STATE_PAUSE;
/* the current song is going to be deleted: stop the player */
playerWait();
playlist->playing = false;
/* see which song is going to be played instead */
playlist->current = queue_next_order(&playlist->queue,
playlist->current);
if (playlist->current == (int)songOrder)
playlist->current = -1;
if (playlist->current >= 0 && !paused)
/* play the song after the deleted one */
playPlaylistOrderNumber(playlist, playlist->current);
else
/* no songs left to play, stop playback
completely */
stopPlaylist(playlist);
queued = NULL;
}
/* now do it: remove the song */
if (!song_in_database(queue_get(&playlist->queue, song)))
pc_song_deleted(queue_get(&playlist->queue, song));
queue_delete(&playlist->queue, song);
incrPlaylistVersion(playlist);
/* update the "current" and "queued" variables */
if (playlist->current > (int)songOrder) {
playlist->current--;
}
playlist_update_queued_song(playlist, queued);
return PLAYLIST_RESULT_SUCCESS;
}
enum playlist_result
deleteFromPlaylistById(struct playlist *playlist, unsigned id)
{
int song = queue_id_to_position(&playlist->queue, id);
if (song < 0)
return PLAYLIST_RESULT_NO_SUCH_SONG;
return deleteFromPlaylist(playlist, song);
}
void
deleteASongFromPlaylist(struct playlist *playlist, const struct song *song)
{
for (int i = queue_length(&playlist->queue) - 1; i >= 0; --i)
if (song == queue_get(&playlist->queue, i))
deleteFromPlaylist(playlist, i);
pc_song_deleted(song);
}
void
playPlaylistOrderNumber(struct playlist *playlist, int orderNum)
{
struct song *song;
char *uri;
playlist->playing = true;
playlist->queued = -1;
song = queue_get_order(&playlist->queue, orderNum);
uri = song_get_uri(song);
g_debug("playlist: play %i:\"%s\"", orderNum, uri);
g_free(uri);
playerPlay(song);
playlist->current = orderNum;
}
static void
playPlaylistIfPlayerStopped(struct playlist *playlist);
/**
* This is the "PLAYLIST" event handler. It is invoked by the player
* thread whenever it requests a new queued song, or when it exits.
*/
void syncPlayerAndPlaylist(struct playlist *playlist)
{
if (!playlist->playing)
/* this event has reached us out of sync: we aren't
playing anymore; ignore the event */
return;
if (getPlayerState() == PLAYER_STATE_STOP)
/* the player thread has stopped: check if playback
should be restarted with the next song. That can
happen if the playlist isn't filling the queue fast
enough */
playPlaylistIfPlayerStopped(playlist);
else {
/* check if the player thread has already started
playing the queued song */
syncPlaylistWithQueue(playlist);
/* make sure the queued song is always set (if
possible) */
if (pc.next_song == NULL)
playlist_update_queued_song(playlist, NULL);
}
}
/**
* The player has stopped for some reason. Check the error, and
* decide whether to re-start playback
*/
static void
playPlaylistIfPlayerStopped(struct playlist *playlist)
{
enum player_error error;
assert(playlist->playing);
assert(getPlayerState() == PLAYER_STATE_STOP);
error = getPlayerError();
if (error == PLAYER_ERROR_NOERROR)
playlist->error_count = 0;
else
++playlist->error_count;
if ((playlist->stop_on_error && error != PLAYER_ERROR_NOERROR) ||
error == PLAYER_ERROR_AUDIO || error == PLAYER_ERROR_SYSTEM ||
playlist->error_count >= queue_length(&playlist->queue))
/* too many errors, or critical error: stop
playback */
stopPlaylist(playlist);
else
/* continue playback at the next song */
nextSongInPlaylist(playlist);
}
bool
getPlaylistRepeatStatus(struct playlist *playlist)
{
return playlist->queue.repeat;
}
bool
getPlaylistRandomStatus(struct playlist *playlist)
{
return playlist->queue.random;
}
void setPlaylistRepeatStatus(struct playlist *playlist, bool status)
{
if (status == playlist->queue.repeat)
return;
playlist->queue.repeat = status;
/* if the last song is currently being played, the "next song"
might change when repeat mode is toggled */
playlist_update_queued_song(playlist,
playlist_get_queued_song(playlist));
idle_add(IDLE_OPTIONS);
}
enum playlist_result
moveSongInPlaylist(struct playlist *playlist, unsigned from, int to)
{
const struct song *queued;
int currentSong;
if (!queue_valid_position(&playlist->queue, from))
return PLAYLIST_RESULT_BAD_RANGE;
if ((to >= 0 && to >= (int)queue_length(&playlist->queue)) ||
(to < 0 && abs(to) > (int)queue_length(&playlist->queue)))
return PLAYLIST_RESULT_BAD_RANGE;
if ((int)from == to) /* no-op */
return PLAYLIST_RESULT_SUCCESS;
queued = playlist_get_queued_song(playlist);
/*
* (to < 0) => move to offset from current song
* (-playlist.length == to) => move to position BEFORE current song
*/
currentSong = playlist->current >= 0
? (int)queue_order_to_position(&playlist->queue,
playlist->current)
: -1;
if (to < 0 && playlist->current >= 0) {
if ((unsigned)currentSong == from)
/* no-op, can't be moved to offset of itself */
return PLAYLIST_RESULT_SUCCESS;
to = (currentSong + abs(to)) % queue_length(&playlist->queue);
}
queue_move(&playlist->queue, from, to);
if (!playlist->queue.random) {
/* update current/queued */
if (playlist->current == (int)from)
playlist->current = to;
else if (playlist->current > (int)from &&
playlist->current <= to) {
playlist->current--;
} else if (playlist->current >= to &&
playlist->current < (int)from) {
playlist->current++;
}
}
incrPlaylistVersion(playlist);
playlist_update_queued_song(playlist, queued);
return PLAYLIST_RESULT_SUCCESS;
}
enum playlist_result
moveSongInPlaylistById(struct playlist *playlist, unsigned id1, int to)
{
int song = queue_id_to_position(&playlist->queue, id1);
if (song < 0)
return PLAYLIST_RESULT_NO_SUCH_SONG;
return moveSongInPlaylist(playlist, song, to);
}
static void orderPlaylist(struct playlist *playlist)
{
if (playlist->current >= 0)
/* update playlist.current, order==position now */
playlist->current = queue_order_to_position(&playlist->queue,
playlist->current);
queue_restore_order(&playlist->queue);
}
void setPlaylistRandomStatus(struct playlist *playlist, bool status)
{
const struct song *queued;
if (status == playlist->queue.random)
return;
queued = playlist_get_queued_song(playlist);
playlist->queue.random = status;
if (playlist->queue.random) {
/* shuffle the queue order, but preserve
playlist->current */
int current_position = playlist->current >= 0
? (int)queue_order_to_position(&playlist->queue,
playlist->current)
: -1;
queue_shuffle_order(&playlist->queue);
if (current_position >= 0) {
/* make sure the current song is the first in
the order list, so the whole rest of the
playlist is played after that */
unsigned current_order =
queue_position_to_order(&playlist->queue,
current_position);
queue_swap_order(&playlist->queue, 0, current_order);
playlist->current = 0;
}
} else
orderPlaylist(playlist);
playlist_update_queued_song(playlist, queued);
idle_add(IDLE_OPTIONS);
}
void shufflePlaylist(struct playlist *playlist)
{
const struct song *queued;
unsigned i;
if (queue_length(&playlist->queue) <= 1)
return;
queued = playlist_get_queued_song(playlist);
if (playlist->playing) {
if (playlist->current >= 0)
/* put current playing song first */
queue_swap(&playlist->queue, 0,
queue_order_to_position(&playlist->queue,
playlist->current));
if (playlist->queue.random) {
playlist->current =
queue_position_to_order(&playlist->queue, 0);
} else
playlist->current = 0;
/* start shuffle after the current song */
i = 1;
} else {
/* no playback currently: shuffle everything, and
reset playlist->current */
i = 0;
playlist->current = -1;
}
/* shuffle the rest of the list */
queue_shuffle_range(&playlist->queue, i,
queue_length(&playlist->queue));
incrPlaylistVersion(playlist);
playlist_update_queued_song(playlist, queued);
}
int getPlaylistCurrentSong(struct playlist *playlist)
{
if (playlist->current >= 0)
return queue_order_to_position(&playlist->queue,
playlist->current);
return -1;
}
unsigned long
getPlaylistVersion(struct playlist *playlist)
{
return playlist->queue.version;
}
int
getPlaylistLength(struct playlist *playlist)
{
return queue_length(&playlist->queue);
}
unsigned
getPlaylistSongId(struct playlist *playlist, unsigned song)
{
return queue_position_to_id(&playlist->queue, song);
}