/* the Music Player Daemon (MPD)
* Copyright (C) 2003-2007 by Warren Dukes (warren.dukes@gmail.com)
* This project's homepage is: http://www.musicpd.org
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "pcm_utils.h"
#include "mpd_types.h"
#include "log.h"
#include "utils.h"
#include "conf.h"
#include <string.h>
#include <math.h>
#include <assert.h>
#ifdef HAVE_LIBSAMPLERATE
#include <samplerate.h>
#endif
void pcm_volumeChange(char *buffer, int bufferSize, AudioFormat * format,
int volume)
{
mpd_sint32 temp32;
mpd_sint8 *buffer8 = (mpd_sint8 *) buffer;
mpd_sint16 *buffer16 = (mpd_sint16 *) buffer;
if (volume >= 1000)
return;
if (volume <= 0) {
memset(buffer, 0, bufferSize);
return;
}
switch (format->bits) {
case 16:
while (bufferSize > 0) {
temp32 = *buffer16;
temp32 *= volume;
temp32 += rand() & 511;
temp32 -= rand() & 511;
temp32 += 500;
temp32 /= 1000;
*buffer16 = temp32 > 32767 ? 32767 :
(temp32 < -32768 ? -32768 : temp32);
buffer16++;
bufferSize -= 2;
}
break;
case 8:
while (bufferSize > 0) {
temp32 = *buffer8;
temp32 *= volume;
temp32 += rand() & 511;
temp32 -= rand() & 511;
temp32 += 500;
temp32 /= 1000;
*buffer8 = temp32 > 127 ? 127 :
(temp32 < -128 ? -128 : temp32);
buffer8++;
bufferSize--;
}
break;
default:
ERROR("%i bits not supported by pcm_volumeChange!\n",
format->bits);
exit(EXIT_FAILURE);
}
}
static void pcm_add(char *buffer1, char *buffer2, size_t bufferSize1,
size_t bufferSize2, int vol1, int vol2,
AudioFormat * format)
{
mpd_sint32 temp32;
mpd_sint8 *buffer8_1 = (mpd_sint8 *) buffer1;
mpd_sint8 *buffer8_2 = (mpd_sint8 *) buffer2;
mpd_sint16 *buffer16_1 = (mpd_sint16 *) buffer1;
mpd_sint16 *buffer16_2 = (mpd_sint16 *) buffer2;
switch (format->bits) {
case 16:
while (bufferSize1 > 0 && bufferSize2 > 0) {
temp32 =
(vol1 * (*buffer16_1) +
vol2 * (*buffer16_2));
temp32 += rand() & 511;
temp32 -= rand() & 511;
temp32 += 500;
temp32 /= 1000;
*buffer16_1 =
temp32 > 32767 ? 32767 : (temp32 <
-32768 ? -32768 : temp32);
buffer16_1++;
buffer16_2++;
bufferSize1 -= 2;
bufferSize2 -= 2;
}
if (bufferSize2 > 0)
memcpy(buffer16_1, buffer16_2, bufferSize2);
break;
case 8:
while (bufferSize1 > 0 && bufferSize2 > 0) {
temp32 =
(vol1 * (*buffer8_1) + vol2 * (*buffer8_2));
temp32 += rand() & 511;
temp32 -= rand() & 511;
temp32 += 500;
temp32 /= 1000;
*buffer8_1 =
temp32 > 127 ? 127 : (temp32 <
-128 ? -128 : temp32);
buffer8_1++;
buffer8_2++;
bufferSize1--;
bufferSize2--;
}
if (bufferSize2 > 0)
memcpy(buffer8_1, buffer8_2, bufferSize2);
break;
default:
ERROR("%i bits not supported by pcm_add!\n", format->bits);
exit(EXIT_FAILURE);
}
}
void pcm_mix(char *buffer1, char *buffer2, size_t bufferSize1,
size_t bufferSize2, AudioFormat * format, float portion1)
{
int vol1;
float s = sin(M_PI_2 * portion1);
s *= s;
vol1 = s * 1000 + 0.5;
vol1 = vol1 > 1000 ? 1000 : (vol1 < 0 ? 0 : vol1);
pcm_add(buffer1, buffer2, bufferSize1, bufferSize2, vol1, 1000 - vol1,
format);
}
#ifdef HAVE_LIBSAMPLERATE
static int pcm_getSamplerateConverter(void)
{
const char *conf, *test;
int convalgo = SRC_SINC_FASTEST;
int newalgo;
size_t len;
conf = getConfigParamValue(CONF_SAMPLERATE_CONVERTER);
if(conf) {
newalgo = strtol(conf, (char **)&test, 10);
if(*test) {
len = strlen(conf);
for(newalgo = 0; ; newalgo++) {
test = src_get_name(newalgo);
if(!test)
break; /* FAIL */
if(!strncasecmp(test, conf, len)) {
convalgo = newalgo;
break;
}
}
} else {
if(src_get_name(newalgo))
convalgo = newalgo;
/* else FAIL */
}
}
DEBUG("Selecting samplerate converter '%s'\n", src_get_name(convalgo));
return convalgo;
}
#endif
/* outFormat bits must be 16 and channels must be 1 or 2! */
void pcm_convertAudioFormat(AudioFormat * inFormat, char *inBuffer,
size_t inSize, AudioFormat * outFormat,
char *outBuffer)
{
static char *bitConvBuffer;
static int bitConvBufferLength;
static char *channelConvBuffer;
static int channelConvBufferLength;
char *dataChannelConv;
int dataChannelLen;
char *dataBitConv;
int dataBitLen;
assert(outFormat->bits == 16);
assert(outFormat->channels == 2 || outFormat->channels == 1);
/* convert to 16 bit audio */
switch (inFormat->bits) {
case 8:
dataBitLen = inSize << 1;
if (dataBitLen > bitConvBufferLength) {
bitConvBuffer = xrealloc(bitConvBuffer, dataBitLen);
bitConvBufferLength = dataBitLen;
}
dataBitConv = bitConvBuffer;
{
mpd_sint8 *in = (mpd_sint8 *) inBuffer;
mpd_sint16 *out = (mpd_sint16 *) dataBitConv;
int i;
for (i = 0; i < inSize; i++) {
*out++ = (*in++) << 8;
}
}
break;
case 16:
dataBitConv = inBuffer;
dataBitLen = inSize;
break;
case 24:
/* put dithering code from mp3_decode here */
default:
ERROR("only 8 or 16 bits are supported for conversion!\n");
exit(EXIT_FAILURE);
}
/* convert audio between mono and stereo */
if (inFormat->channels == outFormat->channels) {
dataChannelConv = dataBitConv;
dataChannelLen = dataBitLen;
} else {
switch (inFormat->channels) {
case 1: /* convert from 1 -> 2 channels */
dataChannelLen = (dataBitLen >> 1) << 2;
if (dataChannelLen > channelConvBufferLength) {
channelConvBuffer = xrealloc(channelConvBuffer,
dataChannelLen);
channelConvBufferLength = dataChannelLen;
}
dataChannelConv = channelConvBuffer;
{
mpd_sint16 *in = (mpd_sint16 *) dataBitConv;
mpd_sint16 *out =
(mpd_sint16 *) dataChannelConv;
int i, inSamples = dataBitLen >> 1;
for (i = 0; i < inSamples; i++) {
*out++ = *in;
*out++ = *in++;
}
}
break;
case 2: /* convert from 2 -> 1 channels */
dataChannelLen = dataBitLen >> 1;
if (dataChannelLen > channelConvBufferLength) {
channelConvBuffer = xrealloc(channelConvBuffer,
dataChannelLen);
channelConvBufferLength = dataChannelLen;
}
dataChannelConv = channelConvBuffer;
{
mpd_sint16 *in = (mpd_sint16 *) dataBitConv;
mpd_sint16 *out =
(mpd_sint16 *) dataChannelConv;
int i, inSamples = dataBitLen >> 2;
for (i = 0; i < inSamples; i++) {
*out = (*in++) / 2;
*out++ += (*in++) / 2;
}
}
break;
default:
ERROR("only 1 or 2 channels are supported for "
"conversion!\n");
exit(EXIT_FAILURE);
}
}
if (inFormat->sampleRate == outFormat->sampleRate) {
memcpy(outBuffer, dataChannelConv, dataChannelLen);
} else {
#ifdef HAVE_LIBSAMPLERATE
static SRC_STATE *state = NULL;
static SRC_DATA data;
static size_t data_in_size, data_out_size;
int error;
static double ratio = 0;
double newratio;
if(!state) {
state = src_new(pcm_getSamplerateConverter(), outFormat->channels, &error);
if(!state) {
ERROR("Cannot create new samplerate state: %s\n", src_strerror(error));
exit(EXIT_FAILURE);
} else {
DEBUG("Samplerate converter initialized\n");
}
}
newratio = (double)outFormat->sampleRate / (double)inFormat->sampleRate;
if(newratio != ratio) {
DEBUG("Setting samplerate conversion ratio to %.2lf\n", newratio);
src_set_ratio(state, newratio);
ratio = newratio;
}
data.input_frames = dataChannelLen / 2 / outFormat->channels;
data.output_frames = pcm_sizeOfOutputBufferForAudioFormatConversion(inFormat, dataChannelLen, outFormat) / 2 / outFormat->channels;
data.src_ratio = (double)data.output_frames / (double)data.input_frames;
if (data_in_size != (data.input_frames *
outFormat->channels)) {
data_in_size = data.input_frames * outFormat->channels;
data.data_in = xrealloc(data.data_in, data_in_size);
}
if (data_out_size != (data.output_frames *
outFormat->channels)) {
data_out_size = data.output_frames *
outFormat->channels;
data.data_out = xrealloc(data.data_out, data_out_size);
}
src_short_to_float_array((short *)dataChannelConv, data.data_in, data.input_frames * outFormat->channels);
error = src_process(state, &data);
if(error) {
ERROR("Cannot process samples: %s\n", src_strerror(error));
exit(EXIT_FAILURE);
}
src_float_to_short_array(data.data_out, (short *)outBuffer, data.output_frames * outFormat->channels);
#else
/* resampling code blatantly ripped from ESD */
mpd_uint32 rd_dat = 0;
mpd_uint32 wr_dat = 0;
mpd_sint16 lsample, rsample;
mpd_sint16 *out = (mpd_sint16 *) outBuffer;
mpd_sint16 *in = (mpd_sint16 *) dataChannelConv;
mpd_uint32 nlen = pcm_sizeOfOutputBufferForAudioFormatConversion(inFormat, inSize, outFormat) / sizeof(mpd_sint16);
switch (outFormat->channels) {
case 1:
while (wr_dat < nlen) {
rd_dat = wr_dat * inFormat->sampleRate /
outFormat->sampleRate;
lsample = in[rd_dat++];
out[wr_dat++] = lsample;
}
break;
case 2:
while (wr_dat < nlen) {
rd_dat = wr_dat * inFormat->sampleRate /
outFormat->sampleRate;
rd_dat &= ~1;
lsample = in[rd_dat++];
rsample = in[rd_dat++];
out[wr_dat++] = lsample;
out[wr_dat++] = rsample;
}
break;
}
#endif
}
return;
}
size_t pcm_sizeOfOutputBufferForAudioFormatConversion(AudioFormat * inFormat,
size_t inSize,
AudioFormat * outFormat)
{
const int shift = sizeof(mpd_sint16) * outFormat->channels;
size_t outSize = inSize;
switch (inFormat->bits) {
case 8:
outSize = outSize << 1;
break;
case 16:
break;
default:
ERROR("only 8 or 16 bits are supported for conversion!\n");
exit(EXIT_FAILURE);
}
if (inFormat->channels != outFormat->channels) {
switch (inFormat->channels) {
case 1:
outSize = (outSize >> 1) << 2;
break;
case 2:
outSize >>= 1;
break;
}
}
outSize /= shift;
outSize = floor(0.5 + (double)outSize *
((double)outFormat->sampleRate / (double)inFormat->sampleRate));
outSize *= shift;
return outSize;
}