{-# OPTIONS_GHC -fglasgow-exts #-} ----------------------------------------------------------------------------- -- | -- Module : XMonad.Layout.Magnifier -- Copyright : (c) Peter De Wachter 2007 -- License : BSD-style (see xmonad/LICENSE) -- -- Maintainer : Peter De Wachter -- Stability : unstable -- Portability : unportable -- -- Screenshot : -- -- This layout hack increases the size of the window that has focus. -- ----------------------------------------------------------------------------- module XMonad.Layout.Magnifier ( -- * Usage -- $usage magnifier, magnifier') where import Graphics.X11.Xlib (Window, Rectangle(..)) import XMonad import XMonad.StackSet import XMonad.Layout.LayoutHelpers -- $usage -- > import XMonad.Layout.Magnifier -- > layouts = [ magnifier tiled , magnifier $ mirror tiled ] -- %import XMonad.Layout.Magnifier -- %layout , magnifier tiled -- %layout , magnifier $ mirror tiled -- | Increase the size of the window that has focus, unless it is the master window. magnifier :: Layout Window -> Layout Window magnifier = layoutModify (unlessMaster applyMagnifier) idModMod -- | Increase the size of the window that has focus, even if it is the master window. magnifier' :: Layout Window -> Layout Window magnifier' = layoutModify applyMagnifier idModMod unlessMaster :: ModDo Window -> ModDo Window unlessMaster mainmod r s wrs = if null (up s) then return (wrs, Nothing) else mainmod r s wrs applyMagnifier :: ModDo Window applyMagnifier r _ wrs = do focused <- withWindowSet (return . peek) let mag (w,wr) ws | focused == Just w = ws ++ [(w, shrink r $ magnify wr)] | otherwise = (w,wr) : ws return (reverse $ foldr mag [] wrs, Nothing) magnify :: Rectangle -> Rectangle magnify (Rectangle x y w h) = Rectangle x' y' w' h' where x' = x - fromIntegral (w' - w) `div` 2 y' = y - fromIntegral (h' - h) `div` 2 w' = round $ fromIntegral w * zoom h' = round $ fromIntegral h * zoom zoom = 1.5 :: Double shrink :: Rectangle -> Rectangle -> Rectangle shrink (Rectangle sx sy sw sh) (Rectangle x y w h) = Rectangle x' y' w' h' where x' = max sx x y' = max sy y w' = min w (fromIntegral sx + sw - fromIntegral x') h' = min h (fromIntegral sy + sh - fromIntegral y')